Gerhard Dziuk and Charles M. Elliott, L^2-estimates for the evolving surface finite element method .. 1
Ming Wang and Jinchao Xu, Minimal finite element spaces for $2m$-th-order partial differential equations in \mathbb{R}^n ... 25
Georgios Akrivis, Implicit–explicit multistep methods for nonlinear parabolic equations ... 45
Wei Gong, Error estimates for finite element approximations of parabolic equations with measure data ... 69
Weizhu Bao and Yongyong Cai, Optimal error estimates of finite difference methods for the Gross-Pitaevskii equation with angular momentum rotation .. 99
Nikolaos Sfakianakis, Adaptive mesh reconstruction for hyperbolic conservation laws with total variation bound 129
Hao Gao and Hongkai Zhao, Analysis of a numerical solver for radiative transport equation .. 153
Bernardo Cockburn, Ivan Merev, and Jianliang Qian, Local a posteriori error estimates for time-dependent Hamilton-Jacobi equations ... 187
Houde Han and Zhongyi Huang, Tailored finite point method based on exponential bases for convection-diffusion-reaction equation 213
Holger Wendland, A high-order approximation method for semilinear parabolic equations on spheres ... 227
Ralf Hiptmair, Andrea Moiola, and Ilaria Perugia, Error analysis of Trefftz-discontinuous Galerkin methods for the time-harmonic Maxwell equations .. 247
Martin Burger, Michael Möller, Martin Benning, and Stanley Osher, An adaptive inverse scale space method for compressed sensing 269
Junfeng Yang and Xiaoming Yuan, Linearized augmented Lagrangian and alternating direction methods for nuclear norm minimization 301
Y. Lipman, J. Puente, and I. Daubechies, Conformal Wasserstein distance: II. computational aspects and extensions 331
Michael Griebel, Frances Y. Kuo, and Ian H. Sloan, The smoothing effect of integration in \mathbb{R}^d and the ANOVA decomposition 383
Youming Liu and Junjian Zhao, An extension of Bittner and Urban’s theorem .. 401
Guo Ben-yu, Sun Tao, and Zhang Chao, Jacobi and Laguerre quasi-orthogonal approximations and related interpolations 413
Béla Bollobás, Malte Lackmann, and Dierk Schleicher, A small probabilistic universal set of starting points for finding roots of complex polynomials by Newton’s method .. 443
Bin Han and Xiaosheng Zhuang, Algorithms for matrix extension and orthogonal wavelet filter banks over algebraic number fields 459
<table>
<thead>
<tr>
<th>Authors</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reza R. Farashahi, Pierre-Alain Fouque, Igor E. Shparlinski, Mehdi Tibouchi, and J. Felipe Voloch</td>
<td>Indifferentiable deterministic hashing to elliptic and hyperelliptic curves</td>
<td>491</td>
</tr>
<tr>
<td>Robert L. Miller and Michael Stoll</td>
<td>Explicit isogeny descent on elliptic curves</td>
<td>513</td>
</tr>
<tr>
<td>Takafumi Shibuta</td>
<td>Irreducibility criterion for algebroid curves</td>
<td>531</td>
</tr>
<tr>
<td>Koray Karabina</td>
<td>Squaring in cyclotomic subgroups</td>
<td>555</td>
</tr>
<tr>
<td>Sorina Ionica and Antoine Joux</td>
<td>Pairing the volcano</td>
<td>581</td>
</tr>
<tr>
<td>Anderson N. Martinhão and Emerson L. Monte Carmelo</td>
<td>Short covering codes arising from matchings in weighted graphs</td>
<td>605</td>
</tr>
<tr>
<td>Yong Zhang and Tianxin Cai</td>
<td>n-tuples of positive integers with the same sum and the same product</td>
<td>617</td>
</tr>
</tbody>
</table>
Editorial Information

Information on the backlog for this journal can be found on the AMS website starting from http://www.ams.org/mcom.

In an effort to make articles available as quickly as possible, articles are posted to the AMS website individually after proof is returned from authors and before appearing in an issue.

A Consent to Publish is required before we can begin processing your paper. After a paper is accepted for publication, the Providence office will send a Consent to Publish and Copyright Agreement to all authors of the paper. By submitting a paper to this journal, authors certify that the results have not been submitted to nor are they under consideration for publication by another journal, conference proceedings, or similar publication.

Information for Authors

Initial submission. The AMS uses Centralized Manuscript Processing for initial submission. Authors should submit a PDF file using the Initial Manuscript Submission form found at www.ams.org/submission/mcom, or send one copy of the manuscript to the following address: Centralized Manuscript Processing, MATHEMATICS OF COMPUTATION, 201 Charles Street, Providence, RI 02904-2294 USA. If a paper copy is being forwarded to the AMS, indicate that it is for Mathematics of Computation and include the name of the corresponding author and contact information, such as an email address or mailing address. The author may suggest an appropriate editor for his or her paper.

The first page must consist of a descriptive title, followed by an abstract that summarizes the article in language suitable for workers in the general field (algebra, analysis, etc.). The descriptive title should be short, but informative; useless or vague phrases such as “some remarks about” or “concerning” should be avoided. The abstract must be brief, reasonably self-contained, and not exceed 300 words. Included with the footnotes to the paper should be the 2010 Mathematics Subject Classification representing the primary and secondary subjects of the article. The classifications are accessible from www.ams.org/msc/. The Mathematics Subject Classification footnote may be followed by a list of key words and phrases describing the subject matter of the article and taken from it. Journal abbreviations used in bibliographies are listed in the latest Mathematical Reviews annual index. The series abbreviations are also accessible from www.ams.org/msnhtml/serials.pdf. To help in preparing and verifying references, the AMS offers MR Lookup, a Reference Tool for Linking, at www.ams.org/mrlookup/.

Electronically prepared manuscripts. For the final submission of accepted papers, the AMS encourages use of electronically prepared manuscripts, with a strong preference for \texttt{AMS-L\LaTeX}. To this end, the Society has prepared \texttt{AMS-L\LaTeX} author packages for each AMS publication. Author packages include instructions for preparing electronic manuscripts, samples, and a style file that generates the particular design specifications of that publication series. Articles properly prepared using the \texttt{AMS-L\LaTeX} style file and the \texttt{\label} and \texttt{\ref} commands automatically enable extensive intra-document linking to the bibliography and other elements of the article for searching electronically on the Web. Because linking must often be added manually to electronically prepared manuscripts in other forms of \texttt{\LaTeX}, using \texttt{AMS-L\LaTeX} also reduces the amount of technical intervention once the files are received by the AMS. This results in fewer errors in processing and saves the author proofreading time. \texttt{AMS-L\LaTeX} papers also move more efficiently through the production stream, helping to minimize publishing costs.

\texttt{AMS-L\LaTeX} is the highly preferred format of \texttt{\LaTeX}, but author packages are also available in \texttt{AMS-\LaTeX}. Those authors who make use of these style files from the beginning of the writing process will further reduce their own efforts. Manuscripts prepared electronically in \texttt{\LaTeX} or plain \texttt{\LaTeX} are normally not acceptable due to the high amount of technical time required to insure that the file will run properly through the AMS in-house production system. \texttt{\LaTeX} users will find that \texttt{AMS-L\LaTeX} is the same as \texttt{\LaTeX} with additional commands to simplify the typesetting of mathematics, and users of plain \texttt{\LaTeX} should have the foundation for learning \texttt{AMS-L\LaTeX}.
Authors may retrieve an author package for *Mathematics of Computation* from www.ams.org/mcom/mcomauthorpac.html or via FTP to ftp.ams.org (login as anonymous, enter your complete email address as password, and type cd pub/author-info). The *AMS Author Handbook* and the *Instruction Manual* are available in PDF format from the author package link. The author package can also be obtained free of charge by sending email to tech-support@ams.org or from the Publication Division, American Mathematical Society, 201 Charles Street, Providence, RI 02904-2294 USA. When requesting an author package, please specify \texttt{AMS-\LaTeX} or \texttt{AMS-\TeX} and the publication in which your paper will appear. Please be sure to include your complete email address.

After acceptance. The source files for the final version of the electronic manuscript should be sent to the Providence office immediately after the paper has been accepted for publication. The author should also submit a PDF of the final version of the paper to the Managing Editor, who will forward a copy to the Providence office. Accepted electronically prepared manuscripts can be submitted via the web at www.ams.org/submit-book-journal/, sent via email to pub-submit@ams.org, or sent on CD to the Electronic Prepress Department, American Mathematical Society, 201 Charles Street, Providence, RI 02904-2294 USA. When sending a manuscript electronically via email or CD, please be sure to include a message indicating in which publication the paper has been accepted. No corrections will be accepted electronically. Authors must mark their changes on their proof copies and return them to the Providence office. Complete instructions on how to send files are included in the author package.

Electronic graphics. Comprehensive instructions on preparing graphics are available starting from www.ams.org/authors/journals.html. A few of the major requirements are given here.

Submit files for graphics as EPS (Encapsulated PostScript) files. This includes graphics originated via a graphics application as well as scanned photographs or other computer-generated images. If this is not possible, TIFF files are acceptable as long as they can be opened in Adobe Photoshop or Illustrator.

Authors using graphics packages for the creation of electronic art should also avoid the use of any lines thinner than 0.5 points in width. Many graphics packages allow the user to specify a “hairline” for a very thin line. Hairlines often look acceptable when proofed on a typical laser printer. However, when produced on a high-resolution laser imagesetter, hairlines become nearly invisible and will be lost entirely in the final printing process.

Screens should be set to values between 15% and 85%. Screens which fall outside of this range are too light or too dark to print correctly. Variations of screens within a graphic should be no less than 10%.

AMS policy on making changes to articles after posting. Articles are posted to the AMS website individually after proof is returned from authors and before appearing in an issue. To preserve the integrity of electronically published articles, once an article is individually posted to the AMS website but not yet in an issue, changes cannot be made in place in the paper. However, an “Added after posting” section may be added to the paper right before the References when there is a critical error in the content of the paper. The “Added after posting” section gives the author an opportunity to correct this type of critical error before the article is put into an issue for printing and before it is then reposted with the issue. The “Added after posting” section remains a permanent part of the paper. The AMS does not keep author-related information, such as affiliation, current address, and email address, up to date after a paper is initially posted.

Once the article is assigned to an issue, even if the issue has not yet been posted to the AMS website, corrections may be made to the paper by submitting a traditional errata article. The errata article will appear in a future print issue and will link back and forth on the web to the original article online.

Secure manuscript tracking on the Web. Authors can track their manuscripts through the AMS journal production process using the personal AMS ID and Article ID printed in the upper right-hand corner of the Consent to Publish form sent to
each author who publishes in AMS journals. Access to the tracking system is available from www.ams.org/mstrack/. An explanation of each production step is provided on the web through links from the manuscript tracking screen. Questions can be sent to mcom-query@ams.org.

Inquiries. Any inquiries concerning a paper that has been accepted for publication that cannot be answered via the manuscript tracking system mentioned above should be sent to mcom-query@ams.org or directly to the Electronic Prepress Department, American Mathematical Society, 201 Charles Street, Providence, RI 02904-2294 USA.

Editorial Committee

SUSANNE C. BRENNER, Chair, Center for Computation and Technology, Johnston Hall, Louisiana State University, Baton Rouge, LA 70803 USA; E-mail: mathcomp@math.lsu.edu
RONALD F. A. COOLS, Department of Computer Science, Katholieke Universiteit Leuven, Celestijnenlaan 200A, B-3001 Heverlee, Belgium; E-mail: ronald.cools@cs.kuleuven.ac.be
IGOR E. SHPARLINSKI, Department of Computing, Macquarie University, Sydney, New South Wales 2109, Australia; E-mail: igor.shparlinski@mq.edu.au
CHI-WANG SHU, Applied Mathematics Division, Brown University, P.O. Box F, 182 George St., Providence, RI 02912-0001 USA; E-mail: mathcomp@dam.brown.edu

Board of Associate Editors

REMI ABGRALL, INRIA & Institut Polytechnique de Bordeaux, Team Bacchus and Institut de Mathématiques de Bordeaux, Bat A29 bis, 351 cours de la Liberation, 33 405 Talence, Cedex France; E-mail: abgrall@math.u-bordeaux.fr
DANIELA CALVETTI, Department of Mathematics, Case Western Reserve University, Yost Hall, 10900 Euclid Avenue., Cleveland, OH 44106 USA; E-mail: daniela.calvetti@case.edu
ZHIMING CHEN, Institute of Computational Mathematics, Chinese Academy of Sciences, P.O. Box 2719, Beijing 100080, China; E-mail: zmchen@lsec.cc.ac.cn
RICARDO G. DURAN, Department of Mathematics, University of Buenos Aires, Ciudad Universitaria, Pabellon I, 1428 Buenos Aires, Argentina; E-mail: rduran@dm.uba.ar
VIVETTE GIRAUT, Laboratoire Jacques-Louis Lions, Boite courrier 187, Université de Pierre et Marie Curie, 4, place Jussieu, 75252 Paris Cedex 05, France; E-mail: girault@ann.jussieu.fr
DOUGLAS HARDIN, Vanderbilt University Department of Mathematics 1326 Stevenson Center Nashville, TN 37240 USA; E-mail: doug.hardin@vanderbilt.edu
FRED J. HICKERNELL, Department of Applied Mathematics, Illinois Institute of Technology, E1 Building, Room 208, 10 W. 32nd Street, Chicago, IL 60616-3793 USA; E-mail: hickernell@iit.edu
GREGOR KEMPER, Technische Universität München, Zentrum Mathematik M 11, Boltzmannstr 3, 85748 Garching, Germany; E-mail: kemper@ma.tum.de
BORIS N. KHOROMSKIJ, Max Planck Institute for Mathematics in the Sciences, Inselstr. 22-26, D-04103 Leipzig, Germany; E-mail: bokh@mis.mpg.de
CHRISTIAN LUBICH, Universität Tübingen, Mathematik, Auf der Morgenstelle 10, 72076 Tübingen; E-mail: lubich@na.uni-tuebingen.de
GÜNTER MALLE, Fachbereich Mathematik, Universität Kaiserslautern, Postfach 3049, 67653 Kaiserslautern, Germany; E-mail: malle@mathematik.uni-kl.de
MICHAEL J. MOSSINGHOFF, Department of Mathematics, Davidson College, Davidson, NC 28035-6996 USA; E-mail: mimossinghoff@davidson.edu
STANLEY OSHER, Department of Mathematics, University of California, P.O. Box 951555, Los Angeles, CA 90095-1555 USA; E-mail: sjo@math.ucla.edu
GILLES PAGÈS, University of Paris VI, Case courrier 188, 4, place Jussieu, 75252 Paris, Cedex 05, France; E-mail: gilles.pages@upmc.fr
Guo Ben-yu, Sun Tao, and Zhang Chao, Jacobi and Laguerre quasi-orthogonal approximations and related interpolations 413
Béla Bollobás, Malte Lackmann, and Dierk Schleicher, A small probabilistic universal set of starting points for finding roots of complex polynomials by Newton’s method ... 443
Bin Han and Xiaosheng Zhuang, Algorithms for matrix extension and orthogonal wavelet filter banks over algebraic number fields 459
Reza R. Farashahi, Pierre-Alain Fouque, Igor E. Shparlinski, Mehdi Tibouchi, and J. Felipe Voloch, Indifferentiable deterministic hashing to elliptic and hyperelliptic curves 491
Robert L. Miller and Michael Stoll, Explicit isogeny descent on elliptic curves ... 513
Takafumi Shibuta, Irreducibility criterion for algebroid curves 531
Koray Karabina, Squaring in cyclotomic subgroups 555
Sorina Ionica and Antoine Joux, Pairing the volcano 581
Anderson N. Martinsão and Emerson L. Monte Carmelo, Short covering codes arising from matchings in weighted graphs 605
Yong Zhang and Tianxin Cai, n-tuples of positive integers with the same sum and the same product ... 617
Gerhard Dziuk and Charles M. Elliott, L^2-estimates for the evolving surface finite element method .. 1
Ming Wang and Jinchao Xu, Minimal finite element spaces for $2m$-th-order partial differential equations in \mathbb{R}^n 25
Georgios Akrivis, Implicit–explicit multistep methods for nonlinear parabolic equations .. 45
Wei Gong, Error estimates for finite element approximations of parabolic equations with measure data ... 69
Weizhu Bao and Yongyong Cai, Optimal error estimates of finite difference methods for the Gross-Pitaevskii equation with angular momentum rotation .. 99
Nikolaos Sfakianakis, Adaptive mesh reconstruction for hyperbolic conservation laws with total variation bound 129
Hao Gao and Hongkai Zhao, Analysis of a numerical solver for radiative transport equation .. 153
Bernardo Cockburn, Ivan Merev, and Jianliang Qian, Local a posteriori error estimates for time-dependent Hamilton-Jacobi equations .. 187
Houde Han and Zhongyi Huang, Tailored finite point method based on exponential bases for convection-diffusion-reaction equation 213
Holger Wendland, A high-order approximation method for semilinear parabolic equations on spheres .. 227
Ralf Hiptmair, Andrea Moiola, and Ilaria Perugia, Error analysis of Trefftz-discontinuous Galerkin methods for the time-harmonic Maxwell equations ... 247
Martin Burger, Michael Möller, Martin Benning, and Stanley Osher, An adaptive inverse scale space method for compressed sensing 269
Junfeng Yang and Xiaoming Yuan, Linearized augmented Lagrangian and alternating direction methods for nuclear norm minimization ... 301
Y. Lipman, J. Puente, and I. Daubechies, Conformal Wasserstein distance: II. computational aspects and extensions 331
Michael Griebel, Frances Y. Kuo, and Ian H. Sloan, The smoothing effect of integration in \mathbb{R}^d and the ANOVA decomposition 383
Youming Liu and Junjian Zhao, An extension of Bittner and Urban's theorem .. 401

(Continued on inside back cover)