Remote Access Mathematics of Computation
Green Open Access

Mathematics of Computation

ISSN 1088-6842(online) ISSN 0025-5718(print)

Request Permissions   Purchase Content 
 
 

 

Operator splitting for two-dimensional incompressible fluid equations


Authors: Helge Holden, Kenneth H. Karlsen and Trygve Karper
Journal: Math. Comp. 82 (2013), 719-748
MSC (2010): Primary 76U05; Secondary 65M12
DOI: https://doi.org/10.1090/S0025-5718-2012-02626-3
Published electronically: June 27, 2012
MathSciNet review: 3008836
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We analyze splitting algorithms for a class of two-dimensional fluid equations, which includes the incompressible Navier-Stokes equations and the surface quasi-geostrophic equation. Our main result is that the Godunov and Strang splitting methods converge with the expected rates provided the initial data are sufficiently regular.


References [Enhancements On Off] (What's this?)

  • 1. L. Caffarelli and A. Vasseur.
    Drift diffusion equations with fractional diffusion and the quasi-geostrophic equation.
    Ann. Math., 171(3):1903-1930, 2010. MR 2680400
  • 2. D. Chae.
    The quasi-geostrophic equation in the Triebel-Lizorkin spaces.
    Nonlinearity, 16(2):479-495, 2003. MR 1958612 (2003m:76178)
  • 3. P. Constantin.
    Euler equations, Navier-Stokes equations and turbulence.
    In Mathematical Foundation of Turbulent Viscous Flows.
    Lecture Notes in Math., Springer, Vol. 1871, pp. 1-43, 2006. MR 2196360 (2007c:76001)
  • 4. P. Constantin, G. Iyer, and J. Wu.
    Global regularity for a modified critical dissipative quasi-geostrophic equation.
    Indiana Univ. Math. J., 57(6):2681-2692, 2008. MR 2482996 (2009k:35120)
  • 5. P. Constantin, A. J. Majda, and E. Tabak.
    Formation of strong fronts in the 2-D quasigeostrophic thermal active scalar.
    Nonlinearity, 7(6):1495-1533, 1994. MR 1304437 (95i:76107)
  • 6. P. Constantin and J. Wu.
    Behavior of solutions of 2D quasi-geostrophic equations.
    SIAM J. Math. Anal., 30(5):937-948, 1999. MR 1709781 (2000j:76019)
  • 7. A. Córdoba and D. Córdoba.
    A maximum principle applied to quasi-geostrophic equations.
    Comm. Math. Phys., 249(3):511-528, 2004. MR 2084005 (2005f:76011)
  • 8. H. Dong and D. Du.
    Global well-posedness and a decay estimate for the critical dissipative quasi-geostrophic equation in the whole space.
    Discrete Contin. Dyn. Syst., 21(4):1095-1101, 2008. MR 2399451 (2009b:76175)
  • 9. H. Holden, K. H. Karlsen, K.-A. Lie, and N. H. Risebro.
    Splitting for Partial Differential Equations with Rough Solutions. Analysis and Matlab programs.
    European Math. Soc. Publishing House, Zürich, 2010. MR 2662342 (2011j:65002)
  • 10. H. Holden, K. H. Karlsen, N. H. Risebro, and T. Tao.
    Operator splitting for the KdV equation.
    Math. Comp., 80:821-846, 2011. MR 2772097
  • 11. H. Holden, C. Lubich, N. H. Risebro.
    Operator splitting for partial differential equations with Burgers nonlinearity.
    Math. Comp., to appear.
  • 12. A. Kiselev.
    Regularity and blow up for active scalars. Math. Model Nat. Phenom. 5(4):225-255, 2010. MR 2662457 (2011e:35303)
  • 13. A. Kiselev.
    Nonlocal maximum principles for active scalars. Adv. Math. 227(5):1806-1826, 2011. MR 2803787
  • 14. A. Kiselev, F. Nazarov, and A. Volberg.
    Global well-posedness for the critical 2D dissipative quasi-geostrophic equation.
    Invent. Math., 167(3):445-453, 2007. MR 2276260 (2008f:35308)
  • 15. O. A. Ladyzhenskaya.
    The Mathematical Theory of Viscous Incompressible Flow.
    Gordon and Breach Science Publishers, New York, 1969, (2nd edition). MR 0254401 (40:7610)
  • 16. N. S. Landkof.
    Foundations of Modern Potential Theory.
    Springer, New York, 1972. MR 0350027 (50:2520)
  • 17. A. J. Majda and A. L. Bertozzi.
    Vorticity and Incompressible Flow.
    Cambridge University Press, Cambridge, 2002. MR 1867882 (2003a:76002)
  • 18. C. Miao and L. Xue.
    Global wellposedness for a modified critical dissipative quasi-geostrophic equation.
    J. Diff. Eq. 252:792-818, 2012.
  • 19. J. Pedlosky.
    Geophysical Fluid Dynamics.
    Springer, 1987, (2nd edition).
  • 20. E. M. Stein.
    Singular Integrals and Differentiability Properties of Functions.
    Princeton University Press, Princeton, N.J., 1970. MR 0290095 (44:7280)
  • 21. T. Tao.
    Nonlinear Dispersive Equations. Local and Global Analysis.
    Amer. Math. Soc., Providence, 2006. MR 2233925 (2008i:35211)

Similar Articles

Retrieve articles in Mathematics of Computation with MSC (2010): 76U05, 65M12

Retrieve articles in all journals with MSC (2010): 76U05, 65M12


Additional Information

Helge Holden
Affiliation: Department of Mathematical Sciences, Norwegian University of Science and Technology, NO–7491 Trondheim, Norway, and Centre of Mathematics for Applications, University of Oslo, P.O. Box 1053, Blindern, NO–0316 Oslo, Norway
Email: holden@math.ntnu.no

Kenneth H. Karlsen
Affiliation: Centre of Mathematics for Applications, University of Oslo, P.O. Box 1053, Blindern, NO–0316 Oslo, Norway
Email: kennethk@math.uio.no

Trygve Karper
Affiliation: Department of Mathematical Sciences, Norwegian University of Science and Technology, NO–7491 Trondheim, Norway
Email: karper@math.ntnu.no

DOI: https://doi.org/10.1090/S0025-5718-2012-02626-3
Keywords: Quasi-geostrophic equation, operator splitting, convergence
Received by editor(s): February 8, 2011
Received by editor(s) in revised form: September 26, 2011
Published electronically: June 27, 2012
Additional Notes: This work was supported in part by the Research Council of Norway.
Article copyright: © Copyright 2012 American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.

American Mathematical Society