Remote Access Mathematics of Computation
Green Open Access

Mathematics of Computation

ISSN 1088-6842(online) ISSN 0025-5718(print)



Convergence of collocation schemes for boundary value problems in nonlinear index 1 DAEs with a singular point

Authors: Alexander Dick, Othmar Koch, Roswitha März and Ewa Weinmüller
Journal: Math. Comp. 82 (2013), 893-918
MSC (2010): Primary 65L80; Secondary 65L70
Published electronically: September 10, 2012
MathSciNet review: 3008842
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We analyze the convergence behavior of collocation schemes applied to approximate solutions of BVPs in nonlinear index 1 DAEs, which exhibit a critical point at the left boundary. Such a critical point of the DAE causes a singularity in the inherent nonlinear ODE system. In particular, we focus on the case when the inherent ODE system is singular with a singularity of the first kind and apply polynomial collocation to the original DAE system. We show that for a certain class of well-posed boundary value problems in DAEs having a sufficiently smooth solution, the global error of the collocation scheme converges uniformly with the so-called stage order. Due to the singularity, superconvergence at the mesh points does not hold in general. The theoretical results are supported by numerical experiments.

References [Enhancements On Off] (What's this?)

  • 1. P. Amodio, T. Levitina, G. Settanni, and E.B. Weinmüller.
    On the calculation of the finite Hankel transform eigenfunctions.
    Submitted to J. Appl. Math. Comp.
  • 2. W. Auzinger, O. Koch, and E.B. Weinmüller.
    Analysis of a new error estimate for collocation methods applied to singular BVPs.
    SIAM J. Numer. Anal., 42:2366-2386, 2005. MR 2139397 (2006b:65109)
  • 3. W. Auzinger, E. Karner, O. Koch, and E.B. Weinmüller.
    Collocation methods for the solution of eigenvalue problems for singular ordinary differential equations.
    Opuscula Math., 26:229-241, 2006. MR 2272293 (2008a:65130)
  • 4. P. Bailey, W. Everitt, and A. Zettl.
    Computing eigenvalues of singular Sturm-Liouville problems.
    Results Math., 20:391-423, 1991. MR 1122349 (93a:65102)
  • 5. K. Balla and R. März.
    A unified approach to linear differential algebraic equations and their adjoint equations.
    J. Anal. Appl., 21(3):783-802, 2002. MR 1929432 (2003g:34002)
  • 6. C.J. Budd and R. Kuske.
    Localised periodic pattern for the non-symmetric generalized Swift-Hohenberg equations.
    Physica D, 208:73-95, 2005. MR 2167908 (2007d:35141)
  • 7. C.J. Budd and J.F. Williams.
    Parabolic Monge-Ampère methods for blow-up problems in several spatial dimensions.
    J. Phys. A, 39:5425-5463, 2006. MR 2220768 (2006k:35130)
  • 8. J. Cash, G. Kitzhofer, O. Koch, G. Moore, and E.B. Weinmüller.
    Numerical solution of singular two-point BVPs.
    JNAIAM J.  Numer. Anal. Indust. Appl. Math., 4:129-149, 2009. MR 2598789 (2011d:65176)
  • 9. M. Drmota, R. Scheidl, H. Troger, and E.B. Weinmüller.
    On the imperfection sensitivity of complete spherical shells.
    Comp. Mech., 2:63-74, 1987.
  • 10. G.B. Froment and K.B. Bischoff.
    Chemical reactor analysis and design.
    John Wiley & Sons Inc., New York, 1990.
  • 11. S. Golub.
    Measures of restrictions in inward foreign direct investment in OECD countries.
    OECD Economics Dept. WP, Nr. 357.
  • 12. R. Hammerling, O. Koch, C. Simon, E.B. Weinmüller.
    Numerical solution of singular ODE eigenvalue problems in electronic structure computations.
    J. Comput. Phys., 181: 1557-1561, 2010. MR 2679273
  • 13. E. Helpman, M.J. Melitz, and S.R. Yeaple.
    Export versus FDI with heterogeneous firms.
    Amer. Econ. Rev., 94(1):300-316, 2004.
  • 14. I. Higueras and R. März.
    Differential algebraic equations with properly stated leading terms.
    Comp. Math. Appl., 48:215-235, 2004. MR 2086798 (2005e:34003)
  • 15. I. Higueras, R. März, and C. Tischendorf.
    Stability preserving integration of index-1 DAEs.
    Appl. Numer. Math, 45:175-200, 2003. MR 1967573 (2004b:34008)
  • 16. F.R. de Hoog and R. Weiss.
    Difference methods for boundary value problems with a singularity of the first kind.
    SIAM J. Numer. Anal., 13:775-813, 1976. MR 0440931 (55:13799)
  • 17. F.R. de Hoog and R. Weiss.
    Collocation methods for singular boundary value problems.
    SIAM J. Numer. Anal., 15:198-217, 1978. MR 0468203 (57:8041)
  • 18. F.R. de Hoog and R. Weiss.
    The numerical solution of boundary value problems with an essential singularity.
    SIAM J. Numer. Anal., 16:637-669, 1979. MR 537278 (80m:65057)
  • 19. F.R. de Hoog and R. Weiss.
    On the boundary value problem for systems of ordinary differential equations with a singularity of the second kind.
    SIAM J. Math. Anal., 11:41-60, 1980. MR 556495 (81a:34017)
  • 20. T. Kapitula.
    Existence and stability of singular heteroclinic orbits for the Ginzburg-Landau equation.
    Nonlinearity, 9:669-685, 1996. MR 1393152 (97d:35208)
  • 21. B. Karabay.
    Foreign direct investment and host country policies: A rationale for using ownership restrictions.
    Technical report, University of Virginia, WP, 2005.
  • 22. H. Keller.
    Approximation methods for nonlinear problems with application to two-point boundary value problems.
    Math. Comp., 29:464-474, 1975. MR 0371058 (51:7279)
  • 23. G. Kitzhofer, O. Koch, and E.B. Weinmüller.
    Pathfollowing for essentially singular boundary value problems with application to the complex Ginzburg-Landau equation.
    BIT., 49:217-245, (2009). MR 2486132 (2010e:35276)
  • 24. G. Kitzhofer, O. Koch, G. Pulverer, Ch. Simon, and E.B. Weinmüller.
    Numerical treatment of singular BVPs: The new Matlab code bvpsuite.
    JNAIAM J. Numer. Anal. Indust. Appl. Math., 5:113-134, 2010.
  • 25. O. Koch.
    Asymptotically correct error estimation for collocation methods applied to singular boundary value problems.
    Numer. Math., 101:143-164, 2005. MR 2194722 (2006k:65189)
  • 26. O. Koch, R. März, D. Praetorius, and E.B. Weinmüller.
    Collocation methods for linear index 1 DAEs with a singularity of the first kind.
    Math. Comp., 79:281-304, 2010. MR 2552227 (2010k:65143)
  • 27. O. Koch and E.B. Weinmüller.
    Analytical and numerical treatment of a singular initial value problem in avalanche modeling.
    Appl. Math. Comput., 148(2):561-570, 2004. MR 2015391 (2004j:34012)
  • 28. P. Kunkel, V. Mehrmann, and R. Stöver.
    Symmetric collocation for unstructured nonlinear differential-algebraic equations of arbitrary index.
    Numer. Math., 98:277-304, 2004. MR 2092743 (2005e:65111)
  • 29. P. Kunkel and V. Mehrmann.
    Differential-Algebraic Equations -- Analysis and Numerical Solution.
    EMS Publishing House, Zürich, Switzerland, 2006. MR 2225970 (2007e:34001)
  • 30. R. März.
    Differential algebraic equations anew.
    Appl. Numer. Math., 42:315-335, 2002. MR 1921345 (2003f:34001)
  • 31. R. März and R. Riaza.
    On linear differential-algebraic equations with properly stated leading terms: A-critical points.
    Math. Comp. Model. Dyn. Sys., 13:291-314, 2004. MR 2333507 (2008e:34006)
  • 32. D.M. McClung and A.I. Mears.
    Dry-flowing avalanche run-up and run-out.
    J. Glaciol., 41(138):359-369, 1995.
  • 33. G. Moore.
    Geometric methods for computing invariant manifolds.
    Appl. Numer. Math., 17:319-331, 1995. MR 1355567 (96g:65082)
  • 34. V.V. Ranade.
    Computational flow modeling for chemical engineering.
    Academic Press, San Diego, 2002.
  • 35. K. Sundmacher and U. Hoffmann.
    Multicomponent mass and energy transport on different length scales in a packed reactive distillation column for heterogeneously catalyzed fuel ether production.
    Chem. Eng. Sci., 49:4443-4464, 1994.
  • 36. Y. Chin-Yu, A.B. Chen, D.M. Nicholson, and W.H. Butler.
    Full-potential Korringa-Kohn-Rostoker band theory applied to the Mathieu potential.
    Phys. Rev. B, 42:10976-10982, 1990.

Similar Articles

Retrieve articles in Mathematics of Computation with MSC (2010): 65L80, 65L70

Retrieve articles in all journals with MSC (2010): 65L80, 65L70

Additional Information

Alexander Dick
Affiliation: Vienna University of Technology, Institute for Analysis and Scientific Computing, Wiedner Hauptstraße 8–10, A-1040 Wien

Othmar Koch
Affiliation: Vienna University of Technology, Institute for Analysis and Scientific Computing, Wiedner Hauptstraße 8–10, A-1040 Wien

Roswitha März
Affiliation: Humboldt-Universität of Berlin, Institute for Mathematics, Unter den Linden 6, D-10099 Berlin, Germany

Ewa Weinmüller
Affiliation: Vienna University of Technology, Institute for Analysis and Scientific Computing, Wiedner Hauptstraße 8–10, A-1040 Wien

Received by editor(s): April 10, 2011
Received by editor(s) in revised form: September 27, 2011
Published electronically: September 10, 2012
Article copyright: © Copyright 2012 American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.

American Mathematical Society