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ERROR ESTIMATES FOR GALERKIN APPROXIMATIONS OF

THE “CLASSICAL” BOUSSINESQ SYSTEM

D. C. ANTONOPOULOS AND V. A. DOUGALIS

Abstract. We consider the “classical” Boussinesq system in one space dimen-
sion and its symmetric analog. These systems model two-way propagation of
nonlinear, dispersive long waves of small amplitude on the surface of an ideal
fluid in a uniform horizontal channel. We discretize an initial-boundary-value
problem for these systems in space using Galerkin-finite element methods and
prove error estimates for the resulting semidiscrete problems and also for their
fully discrete analogs effected by explicit Runge-Kutta time-stepping proce-
dures. The theoretical orders of convergence obtained are consistent with the

results of numerical experiments that are also presented.

1. Introduction

In this paper we will analyze Galerkin approximations to the so-called “classical”
Boussinesq system

(1.1)
ηt + ux + (ηu)x = 0 ,

ut + ηx + uux − 1
3uxxt = 0 ,

which is an approximation of the two-dimensional Euler equations of water-wave
theory that models two-way propagation of long waves of small amplitude on the
surface of an ideal fluid in a uniform horizontal channel of finite depth. The variables
in (1.1) are nondimensional and unscaled; x and t are proportional to position along
the channel and time, respectively, and η = η(x, t) and u = u(x, t) are proportional
to the elevation of the free surface above a level of rest represented by η = 0, and
to the depth-averaged mean horizontal velocity of the fluid.

The system (1.1) is a member of a general family of Boussinesq systems derived
in [11] that are approximations to the Euler equations of the same order as (1.1)
and whose nonlinear and dispersive terms are of equal importance when written in
scaled form. These systems are written as

(1.2)
ηt + ux + (ηu)x + auxxx − bηxxt = 0 ,

ut + ηx + uux + cηxxx − duxxt = 0 ,

where a, b, c, d are real parameters satisfying a+b = 1
2 (θ

2−1/3), c+d = 1
2 (1−θ2),

where 0 ≤ θ ≤ 1. The specific system (1.1) was previously formally derived from
the Euler equations, in the appropriate parameter regime, in [22], [24], and [29]. It
has been widely used in the engineering fluid mechanics literature for computations
of long, nonlinear dispersive waves, starting with [22] and [23].
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Existence and uniqueness of the initial-value problem for (1.1) posed for x ∈ R

and t ≥ 0 and supplemented by initial conditions of the form

(1.3) η(x, 0) = η0(x) , u(x, 0) = u0(x) , x ∈ R ,

was studied by Schonbeck, [25] and Amick, [2]. In these papers global existence
and uniqueness was established for infinitely differentiable initial data of compact
support such that η0(x) > −1, x ∈ R. In [12] the theory of [25] and [2] was used
to prove that given initial data (η0, u0) ∈ Hs(R) × Hs+1(R) for s ≥ 1, such that
infx∈R η0(x) > −1, there is a unique solution (η, u) which, for any T > 0, lies in
C(0, T ;Hs(R)) × C(0, T ;Hs+1(R)). (Here, Hs(R) is the usual, L2-based Sobolev
space of functions on R and C(0, T ;X) denotes the space of functions φ = φ(t)
having, for each t ∈ [0, T ], values in a Banach space X and are such that the map
[0, T ] → ‖φ‖X is continuous.)

It is well known that the initial-value problem (1.1), (1.3) has classical solitary-
wave solutions. In [4] we construct such solutions numerically and investigate,
by means of numerical experiments, their properties and interactions. We use
fully discrete Galerkin methods that approximate solutions of (1.1) posed on finite
intervals and subject to boundary conditions. It is of interest therefore to study
initial-boundary-value problems (ibvp’s) for (1.1) and establish error estimates for
their numerical approximations.

In this paper we shall analyze the numerical solution of the following ibvp for
(1.1): For some 0 < T < ∞, we seek η = η(x, t), u = u(x, t), defined for 0 ≤ x ≤ 1,
0 ≤ t ≤ T , and satisfying

(CB)

ηt + ux + (ηu)x = 0 , (x, t) ∈ [0, 1]× [0, T ] ,

ut + ηx + uux − 1
3uxxt = 0 , (x, t) ∈ [0, 1]× [0, T ] ,

η(x, 0) = η0(x) , u(x, 0) = u0(x) , x ∈ [0, 1] ,

u(0, t) = 0 , u(1, t) = 0 , t ∈ [0, T ] .

This ibvp (for 0 < t < ∞) has been studied by Adamy, [1], who showed that
it has weak (distributional) solutions (η, u) ∈ L∞(R+;L1 × H1

0 ) provided, e.g.,
that η0 ∈ L1, u0 ∈ H1

0 with infx∈[0,1] η0(x) > −1. (Here L1 = L1(0, 1), and

H1
0 = H1

0 (0, 1) is the subspace of the Sobolev space H1(0, 1) whose elements vanish
at x = 0 and x = 1.) The proof uses a parabolic regularization of the first pde of
(CB), a technique used in the context of the Cauchy problem by Schonbeck [25].
It should be noted that the homogeneous Dirichlet boundary conditions on u in
(CB) are one kind of boundary conditions that lead to well-posed ibvp’s in the
case of the linearized system; see [19]. It is noteworthy that the CB system needs
only two boundary conditions for well-posedness as opposed to the four boundary
conditions (for example, Dirichlet conditions on η and u at each endpoint of the
interval) required in the case of other Boussinesq systems, such as the BBM-BBM
(a = c = 0, b = d in (1.2), cf. [10]), or the Bona-Smith systems (a = 0, b = d > 0,
c < 0 in (1.2), [7].) The case of the homogeneous Dirichlet boundary conditions in
(CB) may be viewed as a base for studying the nonhomogeneous analog wherein
u(0, t) and u(1, t) are given functions of t ≥ 0 corresponding to measurements of
the velocity variable at two points along the channel.

In [13], Bona, Colin, and Lannes introduced another type of Boussinesq systems
that they called “completely symmetric”. These, when scaled, are approximations
of the Euler equations of the same order and are obtained by a nonlinear change
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of variables from the usual systems (1.2); they have certain mathematical and
modelling advantages over the latter. In this paper we shall also therefore consider
the analogous problem for the symmetric system, specifically the ibvp

(SCB)

ηt + ux + 1
2 (ηu)x = 0 , (x, t) ∈ [0, 1]× [0, T ] ,

ut + ηx + 3
2uux + 1

2ηηx − 1
3uxxt = 0 , (x, t) ∈ [0, 1]× [0, T ] ,

η(x, 0) = η0(x) , u(x, 0) = u0(x) , x ∈ [0, 1] ,

u(0, t) = 0 , u(1, t) = 0 , t ∈ [0, T ] .

It is not hard to see that the solution of (SCB) satisfies the conservation property

(1.4) ‖η(t)‖2 + ‖u(t)‖2 + 1
3‖ux(t)‖2 = ‖η0‖2 + ‖u0‖2 + 1

3‖u
′
0‖2 ,

for t ≥ 0, which simplifies the study of its well-posedness and the analysis of its
numerical approximations as will be seen in the sequel.

In this paper we shall analyze semidiscrete and fully discrete Galerkin-finite
element methods for the ibvp’s (CB) and (SCB) assuming that their solutions are
sufficiently smooth. Previously, rigorous error estimates for Galerkin methods for
these “classical” Boussinesq systems were proved in the case of the periodic initial-
value problem in [3] and [9]. (For numerical work for this type and for other
Boussinesq systems of the form (1.2) we refer the reader, e.g., to [3], [5], [20], [21],
[10], [8], [14], [15], [16], [4].)

The analysis of Galerkin methods for (CB) or (SCB) is of considerable interest
due to the loss of optimal order of accuracy that emerges from the error estimates
and is also supported by the numerical experiments. We shall investigate this
phenomenon in detail in the paper but one may in general say that in the uniform
spatial mesh case the (limited) loss of accuracy seems to be due to a combination
of effects related to the boundary conditions and the specific form of the “classical”
Boussinesq systems. (For example, no loss of accuracy occurs in the case of periodic
boundary conditions on η and u for these systems; cf. [3], [9].) In the case of
general (quasiuniform) mesh the (more severe) loss of accuracy seems to stem from
the lack of cancellation effects that are present in the uniform mesh case, and from
the hyperbolic character of the first pde of these systems. (The loss of optimal
order of accuracy in standard Galerkin semidiscretizations of first-order hyperbolic
equations manifested in various contexts is well known and was earlier observed,
e.g., by Dupont in [18].)

In section 2 we consider the standard Galerkin semidiscretizations of (CB) and
(SCB) in the space of (at least) continuous functions on [0, 1] that are piecewise
polynomials of degree at most r− 1 (r ≥ 2, integer) with respect to a quasiuniform
mesh. We prove that if the solution (η, u) of (CB) or (SCB) is sufficiently smooth
and (ηh, uh) is the semidiscrete approximation, then ‖η − ηh‖ = O(hr−1) and
‖u − uh‖1 = O(hr−1). (Here ‖ · ‖, ‖ · ‖1 denote, respectively, the L2 and H1

norms on [0, 1].) These rates of convergence are suboptimal in the case of η and
optimal for u; numerical experiments in section 6 indicate that they are sharp.

If the mesh is uniform, better rates are obtained. In section 3 we examine the
standard Galerkin semidiscretization of the two systems in the space of continuous,
piecewise linear functions and we prove, among other things, that the improved
estimates ‖η − ηh‖ = O(h3/2), ‖u − uh‖ = O(h2) hold, as a result of a suitable
superaccuracy estimate involving the error of the interpolant into the finite element
space. In section 4 we consider the case of C2 cubic splines. Here, using some
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relevant superconvergence results of Wahlbin [28], allows proving a series of suitable
superaccuracy estimates for the error of the interpolant and that of the elliptic
projection that lead to error estimates such as ‖η − ηh‖ = O(h3.5

√
ln 1/h), ‖u −

uh‖ = O(h4
√
ln 1/h). These are consistent with the rates of convergence of the

errors obtained from numerical experiments presented in section 6.
In section 5 we turn to the analysis of fully discrete schemes. We consider only

explicit time-stepping schemes in order to avoid the more costly implicit methods
that require solving nonlinear systems of equations at every time step. Of course,
with explicit methods there arises the issue of stability. We confine ourselves to
a uniform mesh spatial discretization and consider three representative explicit
Runge-Kutta schemes, namely, the Euler, the improved Euler, and the classical,
four-stage, Runge-Kutta methods, whose orders of accuracy are 1, 2, and 4, respec-
tively. We couple the Euler and improved Euler schemes with a piecewise linear
spatial discretization and the fourth-order RK scheme with cubic splines. We show
that the stability restrictions on the time step k needed by these schemes are of
the form k = O(h2), k = O(h4/3), and k ≤ λ0h for a constant λ0 sufficiently
small, for the schemes with Euler, improved Euler, and fourth-order RK temporal
discretizations, respectively. Under these restrictions, we prove optimal-order in
time error estimates; the spatial rates of convergence are these of the semidiscrete
approximations.

In this paper we let Ck = Ck[0, 1], k = 0, 1, 2, . . . , denote the space of k times
continuously differentiable functions on [0, 1] and define Ck

0 = {φ ∈ Ck;φ(0) =
φ(1) = 0}. For integer k ≥ 0 we let Hk, ‖ · ‖k denote the usual L2-based Sobolev
space of classes of functions on [0, 1] and its associated norm. (In the case k = 1 we
use the equivalent norm defined by ‖v‖1 = (‖v‖2 + 1

3‖v′‖2)1/2.) The inner product

and norm on L2 = L2(0, 1) is denoted simply by ‖ · ‖, (·, ·), respectively, while the
norms on L∞ = L∞(0, 1) and on W k

∞ = W k
∞(0, 1) by ‖ · ‖∞, ‖ · ‖k,∞. We let Pr

be the polynomials of degree ≤ r. By 〈·, ·〉, |·|, we shall denote the Euclidean inner
product and norm on R

n.
In http://arxiv.org/abs/1008.4248 the interested reader may find an extended

version of the present paper ([6]) including additional results as well as details of
proofs omitted herein.

2. Standard Galerkin semidiscretization on a quasiuniform mesh

Let 0 = x1 < x2 < · · · < xN+1 = 1 denote a quasiuniform partition of [0, 1] with
h := maxi(xi+1 − xi). Given integers r ≥ 2 and 0 ≤ μ ≤ r − 2, let Sh := {φ ∈ Cμ :
φ
∣∣
[xj ,xj+1]

∈ Pr−1 , 1 ≤ j ≤ N}, Sh,0 = {φ ∈ Sh , φ(0) = φ(1) = 0}. It is well known
that there exists a constant C independent of h such that

(2.1) min
χ∈Sh

{‖w − χ‖+ h‖w − χ‖1} ≤ Chr‖w‖r ,

for w ∈ Hr, and that a similar estimate holds in Sh,0 if w ∈ Hr ∩ H1
0 . (In what

follows, C will denote a generic constant, independent of h.) Let a(·, ·) denote the
bilinear form a(ψ, χ) := (ψ, χ) + 1

3 (ψ
′, χ′) ∀ψ,χ ∈ Sh,0, and let Rh : H1 → Sh,0 be

the elliptic projection operator relative to a(·, ·), defined by a(Rhw, χ) = a(w, χ)
∀χ ∈ Sh,0. It follows by standard estimates that for k = 0, 1,

(2.2) ‖Rhw − w‖k ≤ Chr−k‖w‖r if w ∈ Hr ∩H1
0 .
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It also holds ([17]) that

(2.3) ‖Rhw − w‖∞ + h‖Rhw − w‖1,∞ ≤ Chr‖w‖r,∞ ,

provided that w ∈ W r,∞ ∩H1
0 . In addition, the inverse inequalities

‖χ‖1 ≤ Ch−1‖χ‖ ,(2.4)

‖χ‖∞ ≤ Ch−1/2‖χ‖ ,(2.5)

hold for any χ ∈ Sh (or χ ∈ Sh,0), and so does the estimate, [17],

(2.6) ‖Pv − v‖∞ ≤ Chr‖v‖r,∞ , for v ∈ W r,∞ ,

where P : L2 → Sh is the L2-projection operator onto Sh.
The standard Galerkin semidiscretization on Sh of (CB) is defined as follows:

We seek ηh : [0, T ] → Sh, uh : [0, T ] → Sh,0, such that for t ∈ [0, T ],

(2.7)
(ηht, φ) + (uhx, φ) + ((ηhuh)x, φ) = 0 ∀φ ∈ Sh ,

a(uht, χ) + (ηhx, χ) + (uhuhx, χ) = 0 ∀χ ∈ Sh,0 ,

with initial conditions

(2.8) ηh(0) = Pη0 , uh(0) = Rhu0 .

Similarly, we define the analogous semidiscretization of (SCB), which is given for
0 ≤ t ≤ T by

(2.9)
(ηht, φ) + (uhx, φ) +

1
2 ((ηhuh)x, φ) = 0 ∀φ ∈ Sh ,

a(uht, χ) + (ηhx, χ) +
3
2 (uhuhx, χ) +

1
2 (ηhηhx, χ) = 0 ∀χ ∈ Sh,0 ,

with

(2.10) ηh(0) = Pη0 , uh(0) = Rhu0 .

Upon choosing a basis for Sh, it is seen that the semidiscrete problems (2.7), (2.8)
and (2.9), (2.10) represent initial-value problems for systems of ode’s. Clearly, these
systems have unique solutions at least locally in time. One conclusion of the next
proposition is that they possess unique solutions up to t = T , where [0, T ] will
denote henceforth the interval of existence of solutions of (CB) or (SCB).

Proposition 2.1. Let h be sufficiently small. Suppose that the solutions of (CB),
and (SCB), are such that η ∈ C(0, T ;W r

∞), u ∈ C(0, T ;W r
∞ ∩ H1

0 ). Then, the
semidiscrete problems (2.7), (2.8) and (2.9), (2.10) have unique solutions (ηh, uh)
for 0 ≤ t ≤ T that satisfy

max
0≤t≤T

‖η(t)− ηh(t)‖ ≤ Chr−1 ,(2.11)

max
0≤t≤T

‖u(t)− uh(t)‖1 ≤ Chr−1 .(2.12)

Proof. We first consider the case of the symmetric system (SCB). Putting φ = ηh
and χ = uh in (2.9) and adding the resulting equations, we obtain the discrete
analog of (1.4), i.e., that

(2.13) ‖ηh(t)‖2 + ‖uh(t)‖21 = ‖ηh(0)‖2 + ‖uh(0)‖21
is valid in the temporal interval of existence of solutions of (2.9)-(2.10). By standard
ode theory we conclude that the system (2.9), (2.10) possesses a unique solution in
any finite temporal interval [0, T ].
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We now let ρ := η − Pη, θ := Pη − ηh, σ := u − Rhu, ξ := Rhu − uh. Using
(SCB) and (2.9), (2.10) we obtain for 0 ≤ t ≤ T ,

(θt, φ) + (σx + ξx, φ) +
1
2
((ηu− ηhuh), φ) = 0 ∀φ ∈ Sh ,(2.14)

a(ξt, χ) + (ρx + θx, χ) +
3
2
(uux − uhuhx, χ) +

1
2
(ηηx − ηhηhx, χ) = 0 ∀χ ∈ Sh,0 .(2.15)

Note first that ηu − ηhuh = u(ρ + θ) − (ρ + θ)(σ + ξ) + η(σ + ξ), uux − uhuhx =
(uσ)x+(uξ)x− (σξ)x−σσx− ξξx, ηηx−ηhηhx = (ηρ)x+(ηθ)x− (ρθ)x−ρρx− θθx.
Now, by continuity, in view of (2.10), we conclude that there exists a maximal
temporal instance th > 0 such that ‖θ(t)‖∞ ≤ 1 for t ≤ th . Suppose that th < T .
Then, taking φ = θ in (2.14) and using (2.1)-(2.4), (2.6), and integrating by parts,
we have for 0 ≤ t ≤ th,

(2.16)

1
2

d
dt‖θ‖

2 = −(σx, θ)− (ξx, θ)− 1
2

[
((ρu)x, θ) +

1
2 (uxθ, θ)− ((ρσ)x, θ)

− ((ρξ)x, θ)− 1
2 (σxθ, θ)− 1

2 (ξxθ, θ) + ((ησ)x, θ) + ((ηξ)x, θ
]

≤ ‖σx‖‖θ‖+ ‖ξx‖‖θ‖+ 1
2‖u‖∞‖ρx‖‖θ‖+ 1

2‖ux‖∞‖ρ‖‖θ‖
+ 1

4‖ux‖∞‖θ‖2 + 1
2‖ρx‖‖σ‖∞‖θ‖

+ 1
2‖ρ‖‖σx‖∞‖θ‖+ 1

2‖ρ‖∞‖ξx‖‖θ‖
+ C‖ρx‖‖ξ‖1‖θ‖+ 1

4‖σx‖∞‖θ‖2 + 1
4‖ξx‖‖θ‖+

1
2‖η‖∞‖σx‖‖θ‖

+ 1
2‖ηx‖∞‖σ‖‖θ‖+ 1

2‖η‖∞‖ξx‖‖θ‖+ 1
2‖ηx‖∞‖ξ‖‖θ‖

≤ C(hr−1 + ‖ξ‖1 + ‖θ‖)‖θ‖ ,

where C is independent of th. In addition, putting χ = ξ in (2.15) we similarly
obtain, for 0 ≤ t ≤ th,

(2.17)

1
2

d
dt‖ξ‖

2
1 = (ρ+ θ, ξx) +

3
2

[
(uσ, ξx) + (uξ, ξx)− (σξ, ξx) + (σσx, ξ)

]
+ 1

2

[
(ηρ, ξx) + (ηθ, ξx)− (ρθ, ξx)− 1

2 (ρξx, ρ)− (θξx, θ)
]

≤ ‖ρ‖‖ξx‖+ ‖θ‖‖ξx‖+ 3
2‖u‖∞‖σ‖‖ξx‖+ 3

2‖u‖∞‖ξ‖‖ξx‖
+ 3

2‖σ‖∞‖ξ‖‖ξx‖+ 3
2‖σ‖∞‖σx‖‖ξ‖+ 1

2‖η‖∞‖ρ‖‖ξx‖
+ 1

2‖η‖∞‖θ‖‖ξx‖+ 1
2‖ρ‖‖ξx‖+ C‖ρ‖1‖ρ‖‖ξ‖1 + 1

2‖ξx‖‖θ‖
≤ C(hr + ‖ξ‖1 + ‖θ‖)‖ξ‖1 .

From (2.16) and (2.17) it is seen that for 0 ≤ t ≤ th there holds d
dt (‖θ‖+ ‖ξ‖1) ≤

C(hr−1 + ‖θ‖+ ‖ξ‖1), from which, by Gronwall’s Lemma and (2.10), we conclude
that

(2.18) ‖θ(t)‖+ ‖ξ(t)‖1 ≤ Chr−1 , 0 ≤ t ≤ th ,

where C is independent of th. Since by (2.5) ‖θ‖∞ ≤ Ch−1/2‖θ‖, if h is sufficiently
small the maximality property of th is contradicted. Therefore we may take th = T ,
and (2.11) and (2.12) follow from (2.18), (2.1) and (2.2). In the case of (CB) the
invariance property (2.13) no longer holds, and the ivp (2.7), (2.8) has a local unique
solution. Using the same notation as in the case of (SCB), we consider the ivp of
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finding θ(t) ∈ Sh, ξ(t) ∈ Sh,0 for t ≥ 0, such that

(2.19)

(θt, φ) + (σx + ξx, φ) +
(
[u(ρ+ θ)− (ρ+ θ)(σ + ξ)

+ η(σ + ξ)], φ
)
= 0 ∀φ ∈ Sh ,

a(ξt, χ) + (ρx + θx, χ)−
(
u(σ + ξ)− σξ, χ′)
− (σσx + ξξx, χ) = 0 ∀χ ∈ Sh,0 ,

θ(0) = 0 , ξ(0) = 0 .

Obviously, (2.19) has a local unique solution. Let th ∈ (0, T ) be the maximal time
instance for which this solution exists and satisfies ‖θ(t)‖∞ ≤ 1 for 0 ≤ t ≤ th.
Then, as in the case of (SCB), we obtain again that ‖θ(t)‖ + ‖ξ(t)‖1 ≤ Chr−1,
0 ≤ t ≤ th, where C is independent of th. We conclude that we may take th = T .
If ηh = Pη − θ, uh = Rhu− ξ, it follows that (ηh, uh) is a unique solution of (2.7),
(2.8) in [0, T ] and that it satisfies the estimates (2.11) and (2.12). �

The error estimates of this proposition indicate that the L2 rate of convergence
that we obtain for the error η − ηh is suboptimal while that of the H1 norm of
u − uh is optimal. This is consistent with the results of numerical experiments to
be presented in section 6.

3. Semidiscretization with piecewise linear, continuous functions

on a uniform mesh

For integer N ≥ 2 we let h = 1/N and xi = (i − 1)h, i = 1, 2, . . . , N + 1,
S2
h := {φ ∈ C0 : φ

∣∣
[xj ,xj+1]

∈ P1 , 1 ≤ j ≤ N}, S2
h,0 = {φ ∈ S2

h , φ(0) = φ(1) = 0}.
We will use the operators P and Rh introduced in the previous section as well as
the estimates (2.1)-(2.6) for r = 2, putting Sh = S2

h, Sh,0 = S2
h,0. In addition, we

let Ih, Ih,0 denote the interpolation operators with respect to the mesh {xj} into
the spaces S2

h, S
2
h,0, respectively. It is well known that

(3.1) ‖w − Ihw‖+ h‖(w − Ihw)
′‖ ≤ Chk‖w(k)‖ ,

holds for w ∈ Hk, k = 1, 2, and that a similar estimate holds in S2
h,0 if w ∈ Hk∩H1

0 .

We let {φj}N+1
j=1 denote the basis of S2

h satisfying φj(xi) = δij , 1 ≤ i, j ≤ N + 1. In
the following lemma we collect results that will prove useful in the error estimates
that follow.

Lemma 3.1. (i) Let Gij = (φj , φi), 1 ≤ i, j ≤ N + 1. Then there exist positive
constants c1 and c2 such that c1h|γ|2 ≤ 〈Gγ, γ〉 ≤ c2h|γ|2 ∀ γ ∈ R

N+1.

(ii) Let b ∈ R
N+1, γ = G−1b, and ψ =

∑N+1
j=1 γjφj. Then ‖ψ‖ ≤ (c1h)

−1/2|b|.
(iii) Let w ∈ C3. Then, there exists a constant C1 = C1(‖w(3)‖∞) such that for

any x̂ ∈ [xi, xi+1],

(w − Ihw)(x) = − 1
2w

′′(x̂)(x− xi)(xi+1 − x) + g̃(x) , xi ≤ x ≤ xi+1 ,

where ‖g̃‖∞ + h‖g̃′‖∞ ≤ C1h
3.

Proof. The proofs of (i), (ii), (iii) are given in [18] for continuous, piecewise linear,
periodic functions on [0, 1]. It is straightforward to adapt them in the case of S2

h

at hand. �
The following superapproximation result for the interpolation error, a conse-

quence of cancellations due to the uniform mesh, is central for the sequel.
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Lemma 3.2. Let v ∈ C3 and w ∈ C1. If ε := v − Ihv and ψ ∈ S2
h is such that

(ψ, φ) = ((wε)′, φ) ∀ φ ∈ S2
h, then ‖ψ‖ ≤ Ch3/2. If in addition w(0) = w(1) = 0,

then ‖ψ‖ ≤ Ch2.

Proof. Let bi := ((wε)′, φi) = −(wε, φ′
i), 1 ≤ i ≤ N + 1. Clearly, |b1| = O(h2) and

|bN+1| = O(h2). Let 2 ≤ i ≤ N . Then, from Lemma 3.1(iii) we have

bi =
v′′(xi)

2h

∫ xi

xi−1

w(x)(x− xi−1)(xi − x)dx

− v′′(xi)
2h

∫ xi+1

xi

w(x)(x− xi)(xi+1 − x)dx+O(h3)

= −v′′(xi)
2h

∫ xi+1

xi

[w(x)− w(x− h)](x− xi)(xi+1 − x)dx+O(h3) .

Therefore, bi = O(h3), 2 ≤ i ≤ N ; consequently |b| = O(h2) and ‖ψ‖ = O(h3/2) by
Lemma 3.1(ii). If w(0) = 0, Lemma 3.1(iii) gives

b1 = −(wε, φ′
1) =

−v′′(0)
2h

∫ h

0

w(x)x(h− x)dx+O(h3) = O(h3).

Similarly, if w(1) = 0, then bN+1 = O(h3). Hence, |b| = O(h5/2), giving ‖ψ‖ =
O(h2) by Lemma 3.1(ii). �

In the uniform mesh case at hand, and with Sh = S2
h, Sh,0 = S2

h,0, we consider

again the semidiscretizations (2.7) and (2.9) of (CB) and (SCB), respectively, with
the initial conditions for both systems now given by the interpolants of η0, u0:

(3.2) ηh(0) = Ihη0 , uh(0) = Ih,0u0 .

The main result of this section is

Theorem 3.1. Let h = 1/N be sufficiently small. Suppose that the solutions
of (CB) and (SCB) are such that η ∈ C(0, T ;C3), ηt ∈ C(0, T ;C2), u, ut ∈
C(0, T ;C3

0). Then, the semidiscrete problems (2.7), (3.2) and (2.9), (3.2) have
unique solutions (ηh, uh) for 0 ≤ t ≤ T that satisfy

(i) max
0≤t≤T

‖η(t)− ηh(t)‖ ≤ Ch3/2 , max
0≤t≤T

‖u(t)− uh(t)‖1 ≤ Ch ,

(ii) max
0≤t≤T

‖u(t)− uh(t)‖ ≤ Ch2 , max
0≤t≤T

‖ut(t)− uht(t)‖ ≤ Ch2 .

Proof. We give the proof in detail in the case of (SCB), where existence of solutions
of the ivp (2.9), (3.2) for 0 ≤ t ≤ T follows from (2.13). The proof in the case of (CB)
follows from an argument analogous to that given in the proof of Proposition 2.1
and will be omitted. Let ρ := η−Ihη, θ := Ihη−ηh, σ := u−Ih,0u, ξ := Ih,0u−uh.
Note that ηu − ηhuh = ησ + uθ − θξ + F , where F := ηξ + uρ − ρσ − ρξ − θσ.
In addition, ηηx − ηhηhx = −θθx + (ηθ)x + Gx, where G := ηρ − ρθ − 1

2ρ
2 and

uux − uhuhx = Hx, where H := uσ+ uξ − σξ − 1
2σ

2 − 1
2ξ

2. Then, from (SCB) and
(2.9), (3.2) it follows for 0 ≤ t ≤ T that

(θt, φ) + (ξx, φ) +
(
((1 + 1

2η)σ)x, φ
)
+ 1

2 ((uθ)x, φ)−
1
2 ((θξ)x, φ)

+ 1
2 (Fx, φ) = −(ρt, φ) ∀φ ∈ S2

h ,
(3.3)

a(ξt, χ) + (θx, χ) + (ρx, χ)− 1
2 (θθx, χ) +

1
2 ((ηθ)x, χ) +

1
2 (Gx, χ)

+ 3
2 (Hx, χ) = −(σt, χ) ∀χ ∈ S2

h,0 ,
(3.4)



ERROR ESTIMATES FOR THE “CLASSICAL” BOUSSINESQ SYSTEM 697

with

(3.5) θ(0) = 0 , ξ(0) = 0 .

(In the right-hand side of (3.4) we used the fact that for χ ∈ S2
h,0 a(σt, χ) = (σt, χ),

since (v′ − (Ih,0v)
′, χ′) = 0 for v ∈ H1

0 .) In order to show the estimates in (i), we
put φ = θ and χ = ξ in (3.3) and (3.4), integrate by parts, and add the resulting
equations to get for 0 ≤ t ≤ T ,

(3.6)
1
2

d
dt (‖θ‖

2 + ‖ξ‖21) +
(
((1 + 1

2η)σ)x, θ
)
+ 1

2 ((uθ)x, θ) +
1
2 (Fx, θ)

+ (ρx, ξ) +
1
2 ((ηθ)x, ξ) +

1
2 (Gx, ξ) +

3
2 (Hx, ξ) = −(ρt, θ)− (σt, ξ) .

Now, using the approximation properties of S2
h and S2

h,0, integration by parts, and
Lemmas 3.1 and 3.2 we see that∣∣∣(((1 + 1

2η)σ)x, θ
)∣∣∣ =

∣∣∣(P [((1 + 1
2η)σ)x], θ

)∣∣∣ ≤ Ch3/2‖θ‖,

|((uθ)x, θ)| = 1
2 |(uxθ, θ)| ≤ C‖θ‖2,

|(Fx, θ)| ≤ |((ηξ)x, θ)|+ |((uρ)x, θ)|+ |((ρσ)x, θ)|+ |((ρξ)x, θ)|+ 1
2 |(σxθ, θ)|

≤ C
(
‖ξ‖1‖θ‖+ h2‖θ‖+ h‖θ‖2

)
,

|(ρx, ξ)| ≤ Ch2‖ξ‖1 , |((ηθ)x, ξ)| ≤ C‖ξ‖1‖θ‖ ,
|(Gx, ξ)| ≤ |(ηρ, ξx)|+ |(ρθ, ξx)|+ 1

2 |(ρ
2, ξx)| ≤ C

(
h2‖ξ‖1 + h2‖θ‖‖ξ‖1

)
,

|(Hx, ξ)| ≤ |(uσ, ξx)|+ 1
2 |(uxξ, ξ)|+ |(σξ, ξx)|+ 1

2 |(σ
2, ξx)| ≤ C

(
h2‖ξ‖1 + ‖ξ‖21

)
,

|(ρt, θ)|+ |(σt, ξ)| ≤ C
(
h2‖θ‖+ h2‖ξ‖

)
.

Hence, from (3.6) we conclude that for 0 ≤ t ≤ T ,

d
dt (‖θ‖

2+‖ξ‖21) ≤ C
(
h3/2‖θ‖+h2‖ξ‖1

)
+C

(
‖θ‖2+‖ξ‖21

)
≤ C

[
h3+(‖θ‖2+‖ξ‖21)

]
.

By Gronwall’s Lemma we obtain

‖θ(t)‖2 + ‖ξ(t)‖21 ≤ C[h3 + ‖θ(0)‖2 + ‖ξ(0)‖21],
from which, in view of (3.2), we get

(3.7) ‖θ‖+ ‖ξ‖1 ≤ Ch3/2 , 0 ≤ t ≤ T ,

and the estimates in (i) follow. In addition, from (3.7) and the approximation
properties of S2

h and S2
h,0 one may easily derive the following L2 estimates of F , G,

and H, that we note for further reference

(3.8) ‖F‖ ≤ C(‖ξ‖+ h2) , ‖G‖ ≤ Ch2 , ‖H‖ ≤ C(‖ξ‖+ h2) .

We proceed now to prove the optimal-order error estimates in (ii). Equation
(3.4) may be written in the form

(3.9) ξt = Rhv ,

where v is the solution of the problem
(3.10)
v− 1

3v
′′ = −(θ+ρ)x− 1

2 (ηθ)x−
1
2 (G− 1

2θ
2+3H)x−σt , x ∈ [0, 1] , v(0) = v(1) = 0 .

Considering the weak form of (3.10) in H1
0 , and (3.7) and (3.8) we see that

(3.11) ‖v‖1 ≤ Ch3/2 .
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In order to derive a bound for ‖v‖, let ζ ∈ L2 and V be the solution of the problem

(3.12) V − 1
3V

′′ = ζ , x ∈ [0, 1] , V (0) = V (1) = 0 .

Then, by (3.10)

(3.13) (v, ζ) = a(v, V ) = (θ+ ρ, V ′) + 1
2 (ηθ, V

′) + 1
2 (G− 1

2θ
2 + 3H,V ′)− (σt, V ) .

From (3.3) with φ = 1 we see that (θt + ρt, 1) = 0, 0 ≤ t ≤ T . Hence,
∫ 1

0
(θ +

ρ)dx=
∫ 1

0
ρ(x, 0)dx=: J=const. Therefore, if for (x, t) ∈ [0, 1]× [0, T ],

(3.14) γ(x, t) :=

∫ x

0

(
θ(s, t) + ρ(s, t)

)
ds− xJ ,

it follows that γ ∈ H1
0 and γx = θ + ρ− J . Hence, (3.13) yields

(v, ζ) = (γx, V
′) + 1

2 (ηγx, V
′) + 1

2 (G− 1
2θ

2 + 3H − ηρ+ ηJ, V ′)− (σt, V )

= −(γ, V ′′)− 1
2 (γ, ηV

′′ + ηxV
′) + 1

2 (G− 1
2θ

2 + 3H − ηρ+ ηJ, V ′)− (σt, V ) .

Now, using (3.7), (3.8), the approximation and inverse properties of S2
h, S

2
h,0, and

elliptic regularity in (3.12) we obtain |(v, ζ)| ≤ ‖γ‖‖V ′′‖ + C‖γ‖(‖V ′′‖ + ‖V ′‖)
+C(h2 + ‖ξ‖)‖V ′‖+ Ch2‖V ‖ ≤ C(h2 + ‖γ‖+ ‖ξ‖)‖ζ‖, and conclude that

(3.15) ‖v‖ ≤ C(h2 + ‖γ‖+ ‖ξ‖) .
Now let W be the solution of the problem

(3.16) W − 1
3W

′′ = ξ , x ∈ [0, 1] , W (0) = W (1) = 0 .

Using (3.9), (2.15), elliptic regularity in (3.16), and the estimates (3.11) and (3.15)
gives (ξ, ξt) = a(W, ξt) = a(W,Rhv) = a(v,RhW ) = a(v,RhW −W ) + a(W, v) =
a(v,RhW − W ) + (ξ, v) ≤ Ch‖ξ‖‖v‖1 + ‖ξ‖‖v‖ ≤ C(h2 + ‖γ‖ + ‖ξ‖)‖ξ‖, from
which it follows that

(3.17) 1
2

d
dt‖ξ‖

2 ≤ C(h4 + ‖γ‖2 + ‖ξ‖2) , 0 ≤ t ≤ T .

In order to obtain the required optimal-order estimate for ‖ξ‖ from (3.17) we need
a similar estimate for a suitable approximation of γ. For this purpose, observe that
(3.3) yields, for 0 ≤ t ≤ T and φ ∈ S2

h,

(3.18) (γxt, φ) +
1
2 ((uθ)x, φ) = −(wx, φ) ,

where w = ξ + (1 + 1
2η)σ − 1

2θξ +
1
2F ; note that w ∈ H1

0 and that (3.7) and (3.8)

give ‖w‖ ≤ C(‖ξ‖+h2). Using integration by parts and the definition of γ in (3.18)
yields, for 0 ≤ t ≤ T ,

(3.19) (γt, φ
′) + 1

2 (uγx, φ
′) = −(w − 1

2uρ+
1
2uJ, φ

′) ∀φ ∈ S2
h .

Consider now the space S−1
h of discontinuous, piecewise constant functions relative

to the partition {xj}. Given any ψ ∈ S−1
h consider in (3.19) φ ∈ S2

h such that

φ′ = ψ. Hence we have for 0 ≤ t ≤ T (γt, ψ) + 1
2 (uγx, ψ) = −(K,ψ) ∀ ψ ∈ S−1

h ,

where K := w − 1
2uρ+

1
2uJ satisfies ‖K‖ ≤ C(‖ξ‖+ h2). Now taking ψ = P0γ in

the above, where P0 is the L2-projection operator onto S−1
h , yields, for 0 ≤ t ≤ T ,

(3.20) 1
2

d
dt‖P0γ‖2 + 1

2 (uγx, P0γ) = −(K,P0γ) .

Since ‖P0γ − γ‖ ≤ Ch‖γ‖1 (cf. e.g. (16.24) of [27]) and ‖γ‖1 ≤ Ch3/2 by (3.7), we
have |(uγx, P0γ)| = |(uγx, P0γ − γ) − 1

2 (uxγ, γ)| ≤ C(h‖γ‖21 + ‖γ‖2) ≤ C(h‖γ‖21
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+ ‖P0γ − γ‖2 + ‖P0γ‖2) ≤ C(h4 + ‖P0γ‖2). Hence, (3.20) yields, for 0 ≤ t ≤ T ,
that

(3.21) 1
2

d
dt‖P0γ‖2 ≤ C(h4 + ‖P0γ‖2 + ‖ξ‖2) .

Now, from (3.17), since ‖γ‖ ≤ ‖P0γ − γ‖ + ‖P0γ‖ ≤ Ch5/2 + ‖P0γ‖, we get for
0 ≤ t ≤ T ,

(3.22) 1
2

d
dt‖ξ‖

2 ≤ C(h4 + ‖P0γ‖2 + ‖ξ‖2) .

Adding (3.21) and (3.22) we finally obtain by Gronwall’s Lemma and (3.5) that

(3.23) ‖P0γ‖2 + ‖ξ‖2 ≤ Ch4 , 0 ≤ t ≤ T .

Therefore, the first inequality of the conclusion (ii) of the theorem holds; in addi-
tion, by similar estimates with the ones used above, we also obtain

(3.24) ‖γ‖ ≤ Ch2 , 0 ≤ t ≤ T .

Finally, we prove the second estimate of (ii). Let Z be the solution of the problem
Z − 1

3Z
′′ = ξt, x ∈ [0, 1], Z(0) = Z(1) = 0. Then, by (3.9) ‖ξt‖2 = a(Z, ξt) =

a(Z,Rhv) = a(RhZ, v) = a(RhZ − Z, v) + (ξt, v). Hence, elliptic regularity and
(3.11), (3.15), (3.23), (3.24) give

‖ξt‖2 ≤ Ch‖Z‖2‖v‖1 + ‖ξt‖‖v‖ ≤ Ch2‖ξt‖ ,

i.e., ‖ξt‖ ≤ Ch2, and the second estimate of (ii) follows. �

Remark 3.1. It is not hard to see that the conclusions of Theorem 3.1 hold if ηh(0) is
any approximation of η0 in S2

h with optimal-order L2 rate of convergence. However,
uh(0) has to be taken as Ih,0u0 or Rhu0.

Remark 3.2. The superaccuracy estimate ‖ξ‖1 = O(h3/2) of (3.7) combined with
(2.3) and Sobolev’s inequality yields the L∞ estimate ‖u− uh‖∞ = O(h3/2) for u.

Remark 3.3. In the case of a quasiuniform mesh with h = maxi(xi+1 − xi), one
may easily check that the analog of Lemma 3.1 still holds; however, in the proof of
Lemma 3.2 there is no longer cancellation from adjacent intervals and the conclusion
is just that ‖ψ‖ ≤ Ch. As a consequence, the techniques of the proof of Theorem
3.1 now yield that ‖η − ηh‖ = O(h) and ‖u − uh‖1 = O(h), and, instead of the
optimal-order estimates in (ii), that ‖u−uh‖ = O(h3/2) and ‖ut−uht‖ = O(h3/2).
However, for the linearized problem

(3.25)

ηt + ux = 0 ,

ut + ηx − 1
3uxxt = 0 ,

(x, t) ∈ [0, 1]× [0, T ] ,

u(0, t) = 0 , u(1, t) = 0 , t ∈ [0, T ] ,

η(x, 0) = η0(x) , u(x, 0) = u0(x) , x ∈ [0, 1] ,

the last two estimates may be improved to yield optimal order, i.e., to give ‖u −
uh‖ = O(h2), ‖ut − uht‖ = O(h2). The numerical experiments of section 6 suggest
that ‖u − uh‖ = O(h2) even in the nonlinear case, but we have not been able to
prove this.
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4. Semidiscretization with cubic splines on a uniform mesh

We consider again the uniform mesh on [0, 1] given by xi = (i − 1)h, i =
1, 2, . . . , N + 1, where N ≥ 2 is an integer and h = 1/N , and let S4

h := {φ ∈ C2

: φ
∣∣
[xj ,xj+1]

∈ P3, 1 ≤ j ≤ N}, S4
h,0 = {φ ∈ S4

h : φ(0) = φ(1) = 0}, be the space

of (the C2) cubic splines on [0, 1] relative to the partition {xj}, and the space of
cubic splines that vanish at x = 0 and at x = 1. In this section we shall denote by
Ih : C1 → S4

h the interpolation operator, with the properties that for any v ∈ C1,
(Ihv)(xi) = v(xi), 1 ≤ i ≤ N + 1, (Ihv)

′(xk) = v′(xk), k = 1, N + 1, and let
Ih,0 : C1

0 → S4
h,0 be the analogous interpolant onto S4

h,0. It is well known that

(4.1)
2∑

j=0

hj‖w − Ihw‖j ≤ Chk‖w(k)‖

holds for any w ∈ Hk for k = 2, 3, 4 and that a similar estimate holds for Ih,0w if
w ∈ Hk ∩H1

0 . More generally, [26], if 1 ≤ k ≤ 4 and 0 ≤ j < k we have that

(4.2) min
χ∈S4

h

‖(w − χ)(j)‖ ≤ Chk−j‖w(k)‖ if w ∈ Hk

and

(4.3) min
χ∈S4

h

‖(w − χ)(j)‖∞ ≤ Chk−j‖w(k)‖∞ if w ∈ Ck ,

and that a similar estimate holds in S4
h,0 for w in Hk or in Ck that also vanishes

at x = 0 and x = 1. (Of course, (4.1)-(4.3) hold for quasiuniform meshes as well.)
We shall also use the notation and properties of the elliptic projection operator
Rh : H1 → S4

h,0 and the L2 projection P : L2 → S4
h introduced in section 2 for

r = 4, as well as the more general inverse inequalities
(4.4)

‖χ‖β ≤ Ch−(β−α)‖χ‖α , 0 ≤ α ≤ β ≤ 2 , ‖χ‖s,∞ ≤ Ch−(s+1/2)‖χ‖ , 0 ≤ s ≤ 2 ,

valid for any χ ∈ S4
h (or any χ ∈ S4

h,0). As a consequence of these approximations

and inverse properties it follows that P is stable in L∞ and in H1, and that Rh is
stable in H1

0 and in H2 ∩H1
0 .

In this section, we let the standard Galerkin semidiscretization on S4
h of (SCB)

be defined as follows: We seek ηh : [0, T ] → S4
h, uh : [0, T ] → S4

h,0, such that for

t ∈ [0, T ],

(4.5)
(ηht, φ) + (uhx, φ) +

1
2 ((ηhuh)x, φ) = 0 ∀φ ∈ S4

h ,

a(uht, χ) + (ηhx, χ) +
3
2 (uhuhx, χ) +

1
2 (ηhηhx, φ) = 0 ∀χ ∈ S4

h,0 ,

with

(4.6) ηh(0) = Ihη0 , uh(0) = Rhu0 .

The analogous semidiscretization of (CB) is defined similarly. We will denote by

{φj}N+3
j=1 the usual B-spline basis of S4

h defined by the restrictions on [0, 1] of the

functions φj(x) = Φ(xh − (j − 2)), where Φ is the cubic spline on R with respect
to the partition {−2,−1, 0, 1, 2} with support [−2, 2] and nodal values Φ(0) = 1,
Φ(±1) = 1/4, Φ(±2) = 0. Thus, e.g., supp(φj) = [xj−3, xj+1] and φj(xj−1) = 1 for
4 ≤ j ≤ N , etc. Before proving our main error estimate, we shall state and prove a
series of auxiliary results. Our first lemma is a well-known result, the cubic spline
analog of Lemma 3.1.
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Lemma 4.1. (i) Let Gij = (φj , φi), 1 ≤ i, j ≤ N + 3. Then, there exist positive
constants c1 and c2 such that c1h|γ|2 ≤ 〈 Gγ, γ〉 ≤ c2h |γ|2 ∀ γ ∈ R

N+3.

(ii) Let b ∈ R
N+3, γ = G−1b, and ψ =

∑N+3
j=1 γjψj. Then ‖ψ‖ ≤ (c1h)

−1/2|b|.
(iii) Let w ∈ C5. Then, there exists a constant C1 = C1(‖w(5)‖∞) such that for

any x̂ ∈ [xi, xi+1],

(w − Ihw)(x) =
1
4!w

(4)(x̂)(x− xi)
2(xi+1 − x)2 + g̃(x) , xi ≤ x ≤ xi+1 ,

where ‖g̃‖∞ + h‖g̃′‖∞ ≤ C1h
5.

Proof. The proofs of (i)-(iii) are given in [18] in the case of periodic cubic splines.
It is straightforward to adapt them to the case of S4

h and Ih at hand. �

We next prove a superaccuracy estimate for P [(wε)′], where ε is the error of
the cubic spline interpolant of a sufficiently smooth function and w is a C1 weight.
This estimate is a consequence of cancellation effects due to the uniform mesh and
may be viewed as the cubic spline analog of Lemma 3.2.

Lemma 4.2. Let v ∈ C5 and w ∈ C1. If ε = v − Ihv and ψ ∈ S4
h is such that

(ψ, φ) = ((wε)′, φ) ∀ φ ∈ S4
h, then ‖ψ‖ ≤ Ch3.5. If, in addition, w(0) = w(1) = 0,

then ‖ψ‖ ≤ Ch4.

Proof. Let bj = ((wε)′, φj) = −(wε, φ′
j), 1 ≤ j ≤ N + 3. In view of Lemma 4.1(ii)

it suffices to show that |b| = O(h4). It is clear by (4.1) and the properties of the
basis functions φj that bj = O(h4) for all j. We will prove that actually bj = O(h5)
for j = 4, 5, . . . , N , thus establishing that |b| = O(h4). Let 4 ≤ j ≤ N . Using
Lemma 4.1(iii) and putting q(x) = x2(h− x)2/4! we have

(wε, φ′
j) =

3∑
k=0

∫ xj−2+k

xj−3+k

w(x)ε(x)φ′
j(x)dx

= v(4)(xj−2)

∫ xj−2

xj−3

w(x)q(x− xj−3)φ
′
j(x)dx

+ v(4)(xj−1)

∫ xj−1

xj−2

w(x)q(x− xj−2)φ
′
j(x)dx

+ v(4)(xj−1)

∫ xj

xj−1

w(x)q(x− xj−1)φ
′
j(x)dx

+ v(4)(xj)

∫ xj+1

xj

w(x)q(x− xj)φ
′
j(x)dx+O(h5)

=: v(4)(xj−2)J1 + v(4)(xj−1)(J2 + J3) + v(4)(xj)J4 +O(h5) .

Hence, by Taylor’s theorem we obtain

(4.7) (wε, φ′
j) = v(4)(xj−1)(J1 + J2 + J3 + J4) +O(h5) .

Suitable changes of variable in each of the four integrals yield J1 =
∫ h

0
w(x +

xj−3)q(x)φ
′
4(x) dx, J2=

∫ h

0
w(x+xj−2)q(x)φ

′
3(x)dx, J3=

∫ h

0
w(x + xj−1)q(x)φ

′
2(x)

dx, J4 =
∫ h

0
w(x + xj)q(x)φ

′
1(x) dx. One-term Taylor expansions now give, for

xjμ = (xj−2 + xj−1)/2, that J1 + J2 + J3 + J4 = w(xjμ)
∫ h

0
q(x) [φ′

1(x) +

φ′
2(x) + φ′

3(x) + φ′
4(x)] dx + O(h5). The last integral is equal to zero, since

φ4(x) = φ1(h − x), φ3(x) = φ4(h − x), and q(x) = q(h − x) for x ∈ [0, h]. Hence
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J1 + J2 + J3 + J4 = O(h5), and (4.7) implies that bj = O(h5). Thus, the first
assertion of the lemma is verified. To prove the second assertion, suppose that
w(0) = 0. Then bj = O(h5) for j = 1, 2, 3. Indeed, using Lemma 4.1(iii), we have

−b1 = (wε, φ′
1) = v(4)(h)

∫ h

0
w(x)q(x)φ′

1(x) dx + O(h5) = O(h5). Similarly (cf.

[6]), we may prove that b2 = O(h5) and b3 = O(h5). In addition, if w(1) = 0,
we have bj = O(h5) for j = N + 1, N + 2, N + 3. Hence, if w vanishes at x = 0
and x = 1, |b| = O(h5) and the second assertion of the lemma follows by Lemma
4.1(ii). �

We shall also derive a superaccuracy estimate for P [(we)′], where e is the error of
the elliptic projection of a function v ∈ C5

0 and w is a C1 weight. For this purpose,
we first state two superconvergence results that follow from the analysis of Wahlbin
in [28], and which are valid for interior nodes whose distance from the endpoints of
the interval is at least of O(h ln 1/h).

Proposition 4.1. Suppose that v ∈ C5
0 and let vh = Rhv be its elliptic projection

onto S4
h,0. Then the following hold:

(i) There exists a constant C independent of h such that

(4.8) |(v − vh)
′(xi)| ≤ Ch4‖v‖W 5

∞
provided dist(xi, ∂I) ≥ C1h ln

1
h ,

where C1 is a sufficiently large constant independent of h.
(ii) If xi, xi+1 are two adjacent nodes for which the second inequality in (4.8)

holds and e(x) = v(x)− vh(x), we have

(4.9) e(xi+1)− e(xi) = O(h5)‖v‖W 5
∞
.

Proof. (i) The estimate (4.8) follows from Corollary 1.6.2 of [28] (which is strictly
valid when the elliptic projection is defined by (ṽ′h, φ

′) = (v′, φ′) ∀φ ∈ S4
h,0), com-

bined with Theorem 1.3.1 of [28] which allows us to state the result for vh = Rhv
defined as in section 2 of the paper at hand.

(ii) The cancellation property expressed by (4.9) is a consequence of the fact
that ẽ(x) = v(x)− ṽh(x) may be represented in the form

ẽ(x) = Qi(x) +O(h5)‖w‖W 5
∞(xi,xi+1), x ∈ [xi, xi+1],

where Qi(x) is a polynomial of degree four such that Qi(xi) = Qi(xi+1). This
representation follows from the remarks in Example 1.8.2 of [28] and by adapting
the arguments of the proof in Section 1.8 of [28] (which are valid for C1 Hermite
cubics) to the case of the C2 cubic splines at hand. Hence ẽ(xi+1) − ẽ(xi) =
O(h5)‖w‖W 5

∞(xi,xi+1), and (4.9) follows by the function values superconvergence
estimate for elliptic projections given in Theorem 1.3.2 of [28]. �

In the next lemma we present some further formulas for the error v −Rhv that
will be used in the sequel.

Lemma 4.3. (i) Let v ∈ C5
0 , vh = Rhv, e = v − vh, and 1 ≤ i ≤ N . Then, there

exists a constant C = C(‖w‖W 5
∞
) such that for any x̂ ∈ [xi, xi+1],

(4.10) e(x) = γi(x) +
1
4!v

(4)(x̂)(x− xi)
2(xi+1 − x)2 + δi(x) , x ∈ [xi, xi+1] ,

where ‖δi‖∞ ≤ Ch5 and γi is the cubic Hermite polynomial interpolating the values
of e and its derivative at the nodes xi and xi+1.
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(ii) In addition to the hypotheses in (i), suppose that xi and xi+1 satisfy the
second inequality in (4.8). Then, there is a constant C = C(‖v‖W 5

∞
) such that for

any x̂ ∈ [xi, xi+1],

(4.11) e(x) = e(xi) +
1
4!v

(4)(x̂)(x− xi)
2(xi+1 − x)2 + δ̃i(x) , x ∈ [xi, xi+1] ,

where ‖δ̃i‖∞ ≤ Ch5.

Proof. (i) By the standard representation of the error of Hermite interpolation we
have, since vh ∈ P3 in [xi, xi+1], that for x ∈ [xi, xi+1] there holds e(x) − γi =

1
4!

(x− xi)
2(xi+1 − x)2v(4)(tx) for some tx ∈ (xi, xi+1). Hence (4.10) follows from the

mean-value theorem since v ∈ C5.
(ii) We let I = [0, 1], and K = {x ∈ I : dist(x, ∂I) ≥ C1h ln 1/h}. In view of

(4.10) it suffices to show that γi(x) = e(xi) + O(h5)‖v‖W 5
∞

for xi, xi+1 ∈ K. Now
γi(x) = e(xi)Ai,1(x) + e′(xi)Bi,1(x) + e(xi+1)Ai,2(x) + e′(xi+1)Bi,2(x), where

Ai,1(x) =
[
1 + 2(x−xi)

h

] (xi+1−x)2

h2 , Bi,1(x) =
(x−xi)(xi+1−x)2

h2 ,

Ai,2(x) =
[
1 + 2(xi+1−x)

h

] (x−xi)
2

h2 , Bi,2(x) =
−(xi+1−x)(x−xi)

2

h2 .

Hence, using (4.8) and (4.9) we see that γi(x) = e(xi)Ai,1(x) + e(xi+1)Ai,2(x) +
O(h5)‖v‖W 5

∞
= e(xi) + O(h5)‖v‖W 5

∞
, which concludes the proof of the lemma. �

We are now ready to prove the required estimate for P [(we)′], where w is a C1

weight.

Lemma 4.4. Let v ∈ C5
0 and w ∈ C1. If e = v − Rhv and ψ ∈ S4

h is such that

(ψ, φ) = ((we)′, φ) ∀ φ ∈ S4
h, then ‖ψ‖ ≤ Ch3.5

√
ln 1/h.

Proof. Let bj = ((we)′, φj), 1 ≤ j ≤ N + 3. In view of Lemma 4.1(ii) it suffices

to show that |b| = O(h4
√
ln 1/h). It is clear by (2.2) and the properties of the

basis functions φj that bj = O(h4). We will show that for “most” of the the indices
j it is true that bj = O(h5). Let I = [0, 1] and K = {x ∈ I : dist(x, ∂I) ≥
C1h ln 1/h}. Since xi = (i − 1)h, 1 ≤ i ≤ N + 1, it is clear that if xi ∈ K,
then 1 + C1 ln 1/h ≤ i ≤ N + 1 − C1 ln 1/h. Therefore xi ∈ K if and only if
i ∈ M = {ν ∈ N : ν ∈ [1 + C1 ln 1/h,N + 1 − C1 ln 1/h]}. Let μ = minM and
m = maxM . We shall show that

(4.12) |bj | ≤ Ch5 , j = μ+ 4, . . . ,m− 1 .

Indeed, for such j we have

−bj = (we, φ′
j) =

3∑
k=0

∫ xj−2+k

xj−3+k

w(x)e(x)φ′
j(x)dx

=

3∑
k=0

{
e(xj−3+k)

∫ xj−2+k

xj−3+k

w(x)φ′
j(x)dx

+

∫ xj−2+k

xj−3+k

(e(x)− e(xj−3+k))w(x)φ
′
j(x)dx

}
.

Now using Lemma 4.3(ii) in each one of the second group of integrals of this ex-
pression and similar considerations as in the proof of Lemma 4.2, we see that

−bj = e(xj−3)J1 + e(xj−2)J2 + e(xj−1)J3 + e(xj)J4 +O(h5) ,
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where Ji =
∫ xj−3+i

xj−4+i
w(x)φ′

j(x)dx, 1 ≤ i ≤ 4. But since e(xi+1) = e(xi) + O(h5)

when xi, xi+1 ∈ K (by Proposition 4.1(ii)), and taking into account that the Ji
are bounded independently of h and that J1 + J2 + J3 + J4 = O(h) (by similar
considerations as in the proof of Lemma 4.2), we finally obtain (4.12). By the
definitions of μ and m we now have

|b|2 =

μ+3∑
j=1

b2j +
m−1∑

j=μ+4

b2j +
N+3∑
j=m

b2j ≤ C[(μ+ 3)h8 + h9 + (N + 4−m)h8]

≤ C[(C2 + C1 ln
1
h )h

8 + h9] ≤ C3h
8 ln 1

h ,

where C3 = C3(‖v‖W 5
∞
, ‖w‖W 1

∞
, C1), thus concluding the proof of the lemma. �

The main result of this section follows.

Theorem 4.1. Let h = 1/N be sufficiently small. Suppose that the solutions
of (CB) and (SCB) are such that η ∈ C(0, T ;C5), ηt ∈ C(0, T ;C4), u, ut ∈
C(0, T ;C5

0). Then the semidiscrete problem (4.5), (4.6) (and the analogous problem
for (CB)) have unique solutions (ηh, uh) for 0 ≤ t ≤ T that satisfy

(i) max
0≤t≤T

‖η(t)− ηh(t)‖ ≤ Ch3.5
√
ln 1

h , max
0≤t≤T

‖u(t)− uh(t)‖1 ≤ Ch3 ,

(ii) max
0≤t≤T

‖u(t)− uh(t)‖ ≤ Ch4
√
ln 1

h , max
0≤t≤T

‖ut(t)− uht(t)‖ ≤ Ch4
√
ln 1

h .

Proof. Again, we give the proof in the case of (SCB), noting that the analogous
proof for (CB) follows as in Proposition 2.1. The technique of proof is basically the
same as the one used in Theorem 3.1 and here we shall give the details that are
different. We define now ρ := η− Ihη, θ := Ihη− ηh, σ := u−Rhu, ξ := Rhu− uh,
and, arguing as in the proof of Theorem 3.1, we have for 0 ≤ t ≤ T ,

(4.13)
1
2

d
dt (‖θ‖

2 + ‖ξ‖21) +
(
((1 + 1

2η)σ)x, θ
)
+ 1

2 ((uθ)x, θ) +
1
2 (Fx, θ)

+ (ρx, ξ) +
1
2 ((ηθ)x, ξ) +

1
2 (Gx, ξ) +

3
2 (Hx, ξ) = −(ρt, θ) ,

where F := ηξ+uρ−ρσ−ρξ− θσ, G := ηρ−ρθ− 1
2ρ

2, H := uσ+uξ−σξ− 1
2σ

2−
1
2ξ

2. Using the approximation properties of S4
h and S4

h,0, integration by parts, and
Lemmas 4.2 and 4.4 we have∣∣(((1 + 1

2η)σ)x, θ
)∣∣ ≤ Ch3.5

√
ln 1

h‖θ‖ , |((uθ)x, θ)| ≤ C‖θ‖2 ,
|(Fx, θ)| ≤ C(‖ξ‖1‖θ‖+ h4‖θ‖+ ‖θ‖2) , |(ρx, ξ)| ≤ Ch4‖ξ‖1 ,
|((ηθ)x, ξ)| ≤ C‖ξ‖1‖θ‖ , |(Gx, ξ)| ≤ C(‖ξ‖1‖θ‖+ h4‖ξ‖1) ,
|(Hx, ξ)| ≤ C(‖ξ‖2 + h4‖ξ‖1) , |(ρt, θ)| ≤ Ch4‖θ‖ .

Therefore, (4.13) gives for 0 ≤ t ≤ T d
dt (‖θ‖2 + ‖ξ‖21) ≤ C(h7 ln 1

h + ‖θ‖2 + ‖ξ‖21),
from which, by Gronwall’s Lemma and (4.6), we get

(4.14) ‖θ‖+ ‖ξ‖1 ≤ Ch3.5
√
ln 1

h ,

and the estimates (i) follow. In order to prove the estimates (ii), we first note that
that ‖F‖ ≤ C(‖ξ‖+ h4), ‖G‖ ≤ Ch4, ‖H‖ ≤ C(‖ξ‖+ h4). Noting that ξt = Rhv,
where v is the solution of the problem

v− 1
3v

′′ = −(θ+ ρ)x − 1
2 (ηθ)x −

1
2 (G− 1

2θ
2 + 3H)x , x ∈ [0, 1] , v(0) = v(1) = 0 ,
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we see by (4.14) that ‖v‖1 ≤ Ch3.5
√
ln 1/h. Arguing as in the proof of Theorem

3.1 we have now ‖v‖ ≤ C(h4 + ‖γ‖ + ‖ξ‖), where γ =
∫ x

0
(θ(s, t) + ρ(s, t))ds −

x
∫ 1

0
ρ(s, 0)ds. Then, it follows that 1

2
d
dt ‖ξ‖2 ≤ C(h8 + ‖P0γ‖2 + ‖ξ‖2), where

P0 is the L2-projection operator onto S3
h, the space of C1 piecewise quadratic

functions relative to the partition {xj}. We also have, in view of (4.14) and the

estimate ‖P0γ − γ‖ ≤ Ch‖γ‖1, that 1
2

d
dt ‖P0γ‖2 ≤ C(h8 ln 1

h + ‖P0γ‖2 + ‖ξ‖2).
From the last two inequalities and Gronwall’s Lemma we obtain ‖P0γ‖ + ‖ξ‖ ≤
Ch4

√
ln 1

h , from which the first estimate of (ii) follows. The second estimate also

follows along the lines of the proof of Theorem 3.1. �

Remark 4.1. The results of the theorem also hold if we take as ηh(0) any other
approximation of η0 in S4

h of optimal order of accuracy in L2.

Remark 4.2. The superaccuracy estimate ‖ξ‖1 = O(h3.5
√
ln 1/h) of (4.14), com-

bined with (3.3) and Sobolev’s inequality yield the L∞ estimate ‖u − uh‖∞ =

O(h3.5
√
ln 1/h).

5. Fully discrete schemes

In this section we turn to the study of some temporal discretizations of the
ode systems represented by the standard Galerkin spatial discretizations of (CB)
or (SCB), We shall confine ourselves to explicit time stepping schemes in order
to avoid the more costly implicit methods that require solving nonlinear systems
of equations at each time step. Of course, with explicit methods there arises the
issue of stability of the fully discrete schemes. We will not be exhaustive in our
analysis but we will study as examples three simple, well-known explicit Runge-
Kutta temporal discretizations, namely the explicit Euler scheme, the improved
Euler, and the classical, four-stage Runge-Kutta method, of orders of accuracy 1,
2, and 4, respectively. These schemes require, respectively, stability conditions of
the type k = O(h2), k = O(h4/3), and k ≤ λ0h for λ0 sufficiently small, where k
is the time step. The reader will find full convergence proofs in [6]. Here, we shall
analyze in detail the improved Euler time-stepping and just state the error estimate
results for the two other schemes.

5.1. The explicit Euler scheme. Let M be a positive integer, k = T/M denote
the (uniform) time step, and put tn = nk, n = 0, 1, . . . ,M . We consider for ex-
ample, the standard Galerkin semidiscretizations with piecewise linear, continuous
functions on a uniform spatial mesh on [0, 1] with h = 1/N , given by the initial-
value problems (2.7), (3.2) and (2.9), (3.2) (with Sh = S2

h, Sh,0 = S2
h,0) in the case

of the (CB) and the (SCB) systems, respectively. We discretize the systems in time
with the explicit Euler scheme. Hence, we seek for 0 ≤ n ≤ M Hn

h ∈ S2
h, U

n
h ∈ S2

h,0,

approximations of the solution η(x, tn), u(x, tn) of the (SCB) system, such that for
0 ≤ n ≤ M − 1,
(5.1)

(Hn+1
h −Hn

h , φ) + k(Un
hx, φ) +

k
2 ((H

n
hU

n
h )x), φ) = 0 ∀φ ∈ S2

h ,

a(Un+1
h − Un

h , χ) + k(Hn
hx, χ) +

3k
2 (Un

hU
n
hx, χ) +

k
2 (H

n
hH

n
hx, χ) = 0 ∀χ ∈ S2

h,0 ,

with

(5.2) H0
h = Ihη0 , U0

h = Ih,0u0 .
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The full discretization of the semidiscrete (CB) system (2.7), (3.2) is defined anal-
ogously. The following result is proved in [6].

Proposition 5.1. Suppose that the solutions (η, u) of (SCB) and (CB) are suffi-
ciently smooth on [0, T ]. Then, if μ = k/h2, there is a constant C = C(μ), which
is an increasing continuous function of μ, such that

max
0≤n≤M

‖Hn
h − η(tn)‖ ≤ C(k + h3/2) , max

0≤n≤M
‖Un

h − u(tn)‖1 ≤ C(k + h) ,

where (Hn
h , U

n
h ) satisfy (5.1), (5.2) or the analogous fully discrete scheme for (CB),

as the case may be.

The condition k = O(h2) also seems to be necessary in some sense. Numerical
experiments, whose results appear in [6], indicate that the accuracy of computations
degenerated when we took k = hα with decreasing α < 2.

5.2. The improved Euler method. We next study in detail the temporal dis-
cretization of the initial-value problems (2.7), (3.2) and (2.9), (3.2) by the explicit,
second-order accurate “improved Euler” scheme, that may be written in the case
of the ode y′ = f(t, y) in the two-step form yn,1 = yn + k

2f(t
n, yn), yn+1 = yn

+ kf(tn + k
2 , y

n,1). We first introduce some notation in order to write the fully

discrete schemes more compactly. Let A : L2 → S2
h,0 be defined for f ∈ L2 by

(5.3) a(Af, χ) = (f, χ) ∀χ ∈ S2
h,0 ,

i.e., as the discrete solution operator such that wh = Af , where wh is the standard
Galerkin approximation in S2

h,0 of the solution of the two-point bvp − 1
3w

′′ + w =

f , 0 ≤ x ≤ 1, w(0) = w(1) = 0. From (5.3) we have immediately that

(5.4) ‖Af‖1 ≤ C‖f‖−1 ,

where the ‖·‖−1 norm is defined for f ∈ L2 by ‖f‖−1 = sup { (f,g)
‖g‖1

: g ∈ H1
0 , g �= 0}.

With this notation in place and as before letting P be the L2 projection operator
onto S2

h, we may rewrite the improved Euler fully discrete scheme corresponding
to the (SCB) system as follows: For 0 ≤ n ≤ M we seek Hn

h ∈ S2
h, U

n
h ∈ S2

h,0, and

for 0 ≤ n ≤ M − 1 Hn,1
h ∈ S2

h, U
n,1
h ∈ S2

h,0 such that

(5.5)

Hn,1
h −Hn

h + k
2PUn

hx + k
4P (Hn

hU
n
h )x = 0 ,

Un,1
h − Un

h + k
2AHn

hx + 3k
4 A(Un

hU
n
hx) +

k
4A(Hn

hH
n
hx) = 0 ,

Hn+1
h −Hn

h + kPUn,1
hx + k

2P (Hn,1
h Un,1

h )x = 0 ,

Un+1
h − Un

h + kAHn,1
hx + 3k

2 A(Un,1
h Un,1

hx ) + k
2A(Hn,1

h Hn,1
hx ) = 0 ,

for 0 ≤ n ≤ M −1, with H0
h = Ihη0, U

0
h = Ih,0u0. The fully discrete approximation

for (CB) is defined analogously.
We will prove error estimates for the scheme (5.5) and its (CB) analog by com-

paring Hn
h with Ihη(t

n) and Un
h with Ih,0u(t

n). For this purpose, it is useful to
establish the following estimates of the truncation errors of the interpolants. (In
the sequel we shall analyze the approximation of the (SCB) system; the analogous
results for (CB) follow as in section 2. Frequently, we shall suppress the x variable,
denoting, e.g., η(·, t) by η(t) etc.)
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Lemma 5.1. Suppose that the solution (η, u) of (SCB) is sufficiently smooth in
[0, T ]. Let H(t) = Ihη(t), U(t) = Ih,0u(t), and define ψ(t) ∈ S2

h, ζ(t) ∈ S2
h,0 for

0 ≤ t ≤ T by

Ht + PUx + 1
2P (HU)x = ψ ,(5.6)

Ut +AHx + 3
2A(UUx) +

1
2A(HHx) = ζ .(5.7)

Then

(5.8) ‖ψ‖ ≤ Ch3/2 , ‖ψt‖ ≤ Ch3/2 , ‖ζ‖1 ≤ Ch2 , ‖ζt‖1 ≤ Ch2 ,

hold for 0 ≤ t ≤ T . An analogous result holds for (CB).

Proof. Subtracting the equations P (ηt + ux + 1
2 (uη)x) = 0 and (5.6), and putting

ρ := η − Ihη, σ := u − Ih,0u, we obtain P (ρt + [(1 + 1
2η)σ]x + 1

2 (uρ)x − 1
2 (ρσ)x)

= −ψ. Therefore, using the approximation properties of S2
h and S2

h,0, and Lemma
3.2, we have

‖ψ‖≤‖ρt‖+‖P [(1+ 1
2η)σ]x‖+

1
2‖P (uρ)x‖+‖(ρσ)x‖ ≤ C(h2+h3/2+h2+h3)≤Ch3/2.

Similarly, since e.g. by Lemma 3.2 ‖P [(1 + 1
2η)σ]xt‖ ≤ ‖P ( 12ηtσ)x‖ + ‖P [(1 +

1
2η)σt]x‖ ≤ Ch3/2, we have

‖ψt‖ ≤ ‖ρt‖+ ‖P [(1 + 1
2η)σ]xt‖+

1
2‖P (uρ)xt‖+ ‖(ρσ)xt‖

≤ C(h2 + h3/2 + h2 + h3) ≤ Ch3/2.

Now, note that for any χ ∈ S2
h,0, (5.3) and the fact that (σ′

t, χ
′) = 0 yield

a(A(ut − 1
3utxx)− Ut, χ) = (ut, χ) +

1
3 (utx, χ

′)− a(Ut, χ)

= a(σt, χ) = (σt, χ) = a(Aσt, χ).

Hence A(ut− 1
3utxx)−Ut = Aσt, which implies, in view of the second pde of (SCB)

that Aσt + Ut + A(ηx + 3
2uux + 1

2ηηx) = 0. Now subtracting this equation from
(5.7) we see, after some algebra, that

(5.9) A(σt + ρx + 3
2 [(uσ)x − σσx] +

1
2 [(ηρ)x − ρρx]) = −ζ .

Therefore, using (5.4) and the approximation properties of S2
h and S2

h,0, we obtain

‖ζ‖1 ≤ C(‖σt‖−1 + ‖ρx‖−1 + ‖(uσ − 1
2σ

2)x‖−1 + ‖(ηρ− 1
2ρ

2)x‖−1)

≤ C(‖σt‖+ ‖ρ‖+ ‖uσ‖+ ‖σ2‖+ ‖ηρ‖+ ‖ρ2‖) ≤ Ch2 .

Similarly, after differentiating (5.9) with respect to t, we see that ‖ζt‖1 ≤ Ch2, thus
ending the proof. The same results hold for (CB) of course. �

In order to study the consistency and convergence of the fully discrete schemes
we let Hn = H(tn) = Ihη(t

n), Un = U(tn) = Ih,0u(t
n), where (η, u) is the solution

of (SCB), and define (Hn,1, Un,1) ∈ S2
h × S2

h,0 for 0 ≤ n ≤ M − 1 by the equations

(5.10)
Hn,1 −Hn + k

2PUn
x + k

4P (HnUn)x = 0 ,

Un,1 − Un + k
2AHn

x + 3k
2 A(UnUn

x ) +
k
4A(HnHn

x ) = 0 .

In the case of (CB), Hn,1, Un,1 are defined analogously. Our consistency result
follows.
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Lemma 5.2. Suppose that the solution (η, u) of (SCB) is sufficiently smooth and
let λ = k/h. Define, for 0 ≤ n ≤ M − 1, δn1 , δ

n
2 by the equations

δn1 = Hn+1 −Hn + kPUn,1
x + k

2P (Hn,1Un,1)x ,(5.11)

δn2 = Un+1 − Un + kAHn,1
x + 3k

2 A(Un,1Un,1
x ) + k

2A(Hn,1Hn,1
x ) .(5.12)

Then, there exists a constant C1 = C1(λ), which is a polynomial of λ of degree one,
such that

max
0≤n≤M−1

(‖δn1 ‖+ ‖δn2 ‖1) ≤ C1k(k
2 + h3/2) .

The analogous result holds for (CB) as well.

Proof. Let 0 ≤ n ≤ M − 1. By (5.10), (5.6) and (5.7) we have

(5.13) Hn,1 = Hn + k
2H

n
t − k

2ψ
n , Un,1 = Un + k

2U
n
t − k

2 ζ
n .

From these expressions, after some algebra, we obtainHn,1Un,1 =HnUn + k
2 (HU)nt

+ wn
1 , where

(5.14) wn
1 := k2

4 Hn
t U

n
t − k

2 (U
n + k

2U
n
t )ψ

n − k
2 (H

n + k
2H

n
t )ζ

n + k2

4 ψnζn .

Hence, by (5.11), (5.13), (5.8), and the above we obtain

(5.15) δn1 = Hn+1 −Hn − kHn
t − k2

2 Hn
tt + kψn + k2

2 ψn
t − k2

2 Pζnx + k
2Pwn

1x .

Now, (5.14), in view of (5.8) and the approximation and inverse properties of S2
h

and S2
h,0, gives

‖wn
1 ‖1 ≤ C(k2‖Hn

t ‖1‖Un
t ‖1 + k‖ψn‖1(‖Un‖1 + k‖Un

t ‖1)
+ k‖ζn‖1(‖Hn‖1 + k‖Hn

t ‖1) + k2‖ψn‖1‖ζn‖1)
≤ c(k2 + kh−1h3/2(1 + ck) + kh2(1 + ck) + k2h−1h7/2) ≤ c(k2 + λh3/2).

Therefore, by Taylor’s theorem and (5.8) we have

(5.16) ‖δn1 ‖ ≤ c(k3 + kh3/2 + k2h3/2 + k2h2 + k(k2 + λh3/2) ≤ C1k(k
2 + h3/2) ,

where C1 is a constant that is a polynomial of λ of degree one with positive co-
efficients. (Such constants will be generically denoted by C1 in the sequel of this
proof.) In order to estimate ‖δn2 ‖1 note that by (5.13),

(5.17) Un,1Un,1
x = UnUn

x + k
2 (UUx)

n
t + wn

2 ,

where wn
2 := k2

4 Un
t U

n
tx − k

2

(
(Un + k

2U
n
t )ζ

n
)
x
+ k2

4 ζnζnx . By (5.8) and the approx-

imation properties of S2
h,0 we have

(5.18) ‖wn
2 ‖ ≤ C(k2 + kh2) .

Similarly,

(5.19) Hn,1Hn,1
x = HnHn

x + k
2 (HHx)

n
t + wn

3 ,

where wn
3 := k2

4 Hn
t H

n
tx − k

2

(
(Hn + k

2H
n
t )ψ

n
)
x
+ k2

4 ψnψn
x . By (5.8) and the

approximation and inverse properties of S2
h we have

(5.20) ‖wn
3 ‖ ≤ C(k2 + λh3/2) .

By (5.12), (5.14), (5.17), and (5.19), we see now that δn2 = (Un+1 − Un − kUn
t

− k2

2 Un
tt) + kζn + k2

2 ζnt − k2

2 Aψn
x + 3k

2 Awn
2 + k

2Awn
3 . Therefore, by Taylor’s

theorem, (5.8), (5.4), (5.18), (5.20), ‖δn2 ‖1 ≤ c(k3 + kh2 + k2h2 + k2h3/2 + k3 +
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k2h2 + k3 + λkh3/2) ≤ C1k(k
2 + h3/2), which, with (5.16), concludes the proof of

the lemma. The case of (CB) is entirely analogous. �
For the stability and convergence of the fully discrete scheme it is sufficient to

suppose that k = O(h4/3) as the following result shows.

Proposition 5.2. Suppose that the solutions (η, u) of (SCB) and (CB) are suffi-
ciently smooth on [0, T ]. Then, if μ = k/h4/3, there is a constant C = C(μ), which
is an increasing continuous function of μ, such that

max
0≤n≤M

‖Hn
h − η(tn)‖ ≤ C(k2 + h3/2) , max

0≤n≤M
‖Un

h − u(tn)‖1 ≤ C(k2 + h) .

Proof. We consider (SCB), and put εn = Hn−Hn
h , e

n = Un−Un
h , θ

n = Hn,1−Hn,1
h ,

and ξn = Un,1 − Un,1
h . We will show that

(5.21) max
0≤n≤M

(‖εn‖+ ‖en‖1) ≤ C(k2 + h3/2) ,

from which the conclusion of the proposition follows. From (5.6), (5.11), (5.12) we
have, for 0 ≤ n ≤ M − 1,

(5.22) εn+1 = εn − kPξnx − k
2P (Hn,1Un,1 −Hn,1

h Un,1
h )x + δn1 ,

and
(5.23)

en+1 = en − kAθnx − 3k
2 A(Un,1Un,1

x −Un,1
h Un,1

hx )− k
2A(Hn,1Hn,1

x −Hn,1
h Hn,1

hx )+ δn2 .

From Lemma 5.2 we have an estimate of ‖δn1 ‖+‖δn2 ‖1. Our goal is to obtain suitable
estimates of the remaining terms of the right-hand sides of (5.22) and (5.23) in terms
of ‖εn‖+‖en‖1. To do this, note first that (5.10) and (5.6) give θn = εn − k

2Penx −
k
4P (HnUn − Hn

hU
n
h )x; but H

nUn − Hn
hU

n
h = Hnen − εnen + Unεn. Therefore,

(5.24) θn = εn − k
4ρ

n
1 − k

2ω
n
1 ,

where

(5.25) ρn1 := P (Unεn)x ,

and

(5.26) ωn
1 := Penx + 1

2P (Hnen)x − 1
2P (εnen)x .

Similarly, ξn = en − k
2Aεnx − 3k

4 A(UnUn
x − Un

hU
n
hx) − k

4A(HnHn
x − Hn

hH
n
hx);

but UnUn
x − UhU

n
hx = (Unen)x − enenx , H

nHn
x − Hn

hH
n
hx = (Hnεn)x − εnεnx .

Therefore,

(5.27) ξn = en − k
2ω

n
2 ,

where

(5.28) ωn
2 := Aεnx + 3

2A(Unen)x − 3
2A(enenx) +

1
2A(Hnεn)x − 1

2A(εnεnx) .

In addition, by (5.24) we have

(5.29) Hn,1Un,1 −Hn,1
h Un,1

h = Unεn − k
4U

nρn1 − k
2U

nωn
1 + ωn

3 ,

where

(5.30) ωn
3 := (Un,1 − Un)θn +Hn,1ξn − θnξn .

From (5.22), (5.24)-(5.29) we therefore conclude that for 0 ≤ n ≤ M − 1,

(5.31) εn+1 = εn − k
2ρ

n
1 + k2

8 ρn2 − kωn
4 + δn1 ,
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where

(5.32) ρn2 := P (Unρn1 )x ,

and

(5.33) ωn
4 := Penx − k

2Pωn
2x − k

4P (Unωn
1 )x + 1

2Pωn
3x .

Finally, using the identities Un,1Un,1
x −Un,1

h Un,1
hx = (Un,1ξn)x−ξnξnx andHn,1Hn,1

x −
Hn,1

h Hn,1
hx = (Hn,1θn)x − θnθnx , we obtain from (5.23) that for 0 ≤ n ≤ M − 1,

(5.34) en+1 = en−kAθnx − 3k
2 A

(
(Un,1ξn)x− ξnξnx

)
− k

2A
(
(Hn,1θn)x−θnθnx

)
+ δn2 .

We now estimate the various terms in the right-hand sides of (5.31) and (5.34). Let
0 ≤ n∗ ≤ M − 1 be the maximal index for which

(5.35) ‖εn‖1 + ‖en‖1 ≤ 1 , 0 ≤ n ≤ n∗ .

Then, by (5.26), the approximation properties of S2
h and (5.35), we have, for 0 ≤

n ≤ n∗,

(5.36) ‖ωn
1 ‖ ≤ ‖en‖1 + C‖Hn‖1‖en‖1 + C‖εn‖1‖en‖1 ≤ C‖en‖1 .

By (5.28), the approximation properties of S2
h, S

2
h,0, and (5.4) there follows for 0 ≤

n ≤ n∗,

(5.37) ‖ωn
2 ‖1 ≤ C(‖εn‖+‖en‖+‖en‖1‖en‖+‖εn‖+‖εn‖1‖εn‖) ≤ C(‖εn‖+‖en‖) .

Hence, by (5.27), for 0 ≤ n ≤ n∗,

(5.38) ‖ξn‖1 ≤ C(‖εn‖+ ‖en‖1) .
In addition, by (5.24), (5.25), (5.36) and the inverse assumptions we have for 0 ≤
n ≤ n∗,
(5.39)
‖θn‖ ≤ ‖εn‖+ C k

2‖ε
n‖+ C‖en‖1 ≤ (1 + Cλ)‖εn‖+ C‖en‖1 ≤ Cλ(‖εn‖+ ‖en‖1) ,

where we have put λ = k/h; in what follows, Cλ will denote various constants that
depend polynomially on λ. Note also that in view of (5.35) we have for 0 ≤ n ≤
n∗, from (5.36), (5.25) and inverse inequalities,

(5.40) ‖θn‖1 ≤ ‖εn‖1 +Ck‖ρn1‖1 +Ck‖ωn
1 ‖1 ≤ ‖εn‖1 +Cλ‖ρn1‖+Cλ‖ωn

1 ‖ ≤ Cλ .

By (5.30), (5.13), (5.8), (5.39), (5.38) and (5.35) we have for 0 ≤ n ≤ n∗,

(5.41)

‖ωn
3 ‖ ≤ C(‖Un,1 − Un‖1‖θn‖+ ‖Hn,1‖‖ξn‖1 + ‖θn‖‖ξn‖1)

≤ C((k + h2)‖θn‖+ ‖ξn‖1 + ‖θn‖‖ξn‖1)
≤ Cλ(‖εn‖+ ‖en‖1) .

Also, by (5.39), (5.38), (5.40), for 0 ≤ n ≤ n∗,
(5.42)
‖ωn

3 ‖1 ≤ C(‖Un,1 − Un‖1‖θn‖1 + ‖Hn,1‖1‖ξn‖1 + ‖θn‖1‖ξn‖1)
≤ (k + h2)h−1Cλ(‖εn‖+ ‖en‖1) + Cλ(‖εn‖+ ‖en‖1) + Cλ(‖εn‖+ ‖en‖1)
≤ Cλ(‖εn‖+ ‖en‖1) .

Hence, by (5.33), (5.37), (5.36), (5.41) and the inverse inequalities we have for
0 ≤ n ≤ n∗ ‖ωn

4 ‖ ≤ ‖en‖1 + Ck(‖εn‖ + ‖en‖) + Cλ‖en‖1 + Cλ(‖εn‖ + ‖en‖1) ≤
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Cλ(‖εn‖ + ‖en‖1). Therefore, in the right-hand side of (5.31) we have for 0 ≤ n ≤
n∗ in view of Lemma 5.2,

(5.43) ‖ − kωn
4 + δn1 ‖ ≤ Cλk(‖εn‖+ ‖en‖1) + Cλk(k + h3/2) .

We embark now upon obtaining a sharp L2-estimate of the remaining term εn −
k
2ρ

n
1 + k2

8 ρn2 in (5.31). We have ‖εn − k
2ρ

n
1 + k2

8 ρn2‖2 = ‖εn‖2 + k2

4 ‖ρn1‖2 + k4

64‖ρn2‖2

− k(εn, ρn1 ) + k2

4 (εn, ρn2 ) − k3

8 (ρn1 , ρ
n
2 ). Now, by (5.25), (εn, ρn1 ) = (εn, (Unεn)x)

= 1
2 (U

n
x ε

n, εn). Also, by (5.32), (5.25), (εn, ρn2 ) = − (εnx , U
nρn1 ) = − ‖ρn1‖2 +

(Un
x ε

n, ρn1 ), (ρ
n
1 , ρ

n
2 ) =

1
2 (U

n
x ρ

n
1 , ρ

n
1 ). Therefore, we conclude that

(5.44)

‖εn− k
2ρ

n
1+

k2

8 ρn2‖2 = ‖εn‖2+ k4

64‖ρ
n
2‖2− k

2 (U
n
x ε

n, εn)+ k2

4 (Un
x ε

n, ρn1 )− k3

16 (U
n
x ρ

n
1 , ρ

n
1 ) .

Now, by the approximation and inverse properties of S2
h,0 we have by (5.25), (5.32)

that |(Un
x ε

n, εn)| ≤ C‖εn‖2, |(Un
x ε

n, ρn1 )| ≤ C‖εn‖‖ρn1‖ ≤ Ch−1‖εn‖2, |(Un
x ρ

n
1 , ρ

n
1 )|

≤ C‖ρn1‖2 ≤ Ch−2‖εn‖2, ‖ρn2‖ ≤ Ch−2‖εn‖. Inserting these estimates in (5.44)

and recalling that μ = k/h4/3 we are led to the inequality ‖εn − k
2ρ

n
1 + k2

8 ρn2‖2 ≤
(1 + Ckμ3 + Ck + Ckλ + Ckλ2)‖εn‖2 ≤ (1 + Cμk)‖εn‖2, and, hence, to

(5.45) ‖εn − k
2ρ

n
1 + k2

8 ρn2‖ ≤ (1 + Cμk)‖εn‖ ,
where, by Cμ we denote a constant depending polynomially on μ; we have replaced

Cλ’s by Cμ’s since λ = h1/3μ ≤ μ. We finally obtain from (5.45), (5.43) and (5.31),
for 0 ≤ n ≤ n∗, that

(5.46) ‖εn+1‖ ≤ ‖εn‖+ Cμk(‖εn‖+ ‖en‖1) + Cμk(k
2 + h3/2) .

We now estimate the ‖ · ‖1 norm of the various terms in the right-hand side of
(5.34). For 0 ≤ n ≤ n∗, by (5.4), (5.13), (5.35), and (5.38) we have ‖A

(
(Un,1ξn)x

− ξnξnx
)
‖1 ≤ C‖Un,1ξn − 1

2 (ξ
n)2‖ ≤ C‖ξn‖1 ≤ C(‖εn‖ + ‖en‖1). Similarly, for

0 ≤ n ≤ n∗, by (5.39), ‖A
(
(Hn,1θn)x − θnθnx

)
‖1 ≤ C‖Hn,1θn − 1

2 (θ
n)2‖ ≤ Cλ‖θn‖

≤ Cλ(‖εn‖ + ‖en‖1). Therefore, using (5.34), (5.39) and Lemma 5.2 we have for
0 ≤ n ≤ n∗,

(5.47)
‖en+1‖1 ≤ ‖en‖1 + Ck‖θn‖+ Cλk(‖εn‖+ ‖en‖1) + Cλk(k

2 + h3/2)

≤ ‖en‖1 + Cλk(‖εn‖+ ‖en‖1) + Cλk(k
2 + h3/2) .

Now adding (5.46) and (5.47), we conclude for 0 ≤ n ≤ n∗ that ‖εn+1‖ + ‖en+1‖1 ≤
(1 + Cμk)(‖εn‖ + ‖en‖1) + Cμk(k

2 + h3/2). Using Gronwall’s Lemma and taking
h sufficiently small contradicts the maximality of n∗. Hence n∗ may be taken equal
to M − 1 and it holds that

‖εn‖+ ‖en‖1 ≤ exp(CμT )(k
2 + h3/2) , 0 ≤ n ≤ M ,

i.e., that (5.21) is valid; the conclusion of the proposition follows. The (CB) case
is entirely similar. �

Remark 5.1. The last estimate and Sobolev’s inequality imply that ‖en‖∞ = O(k2+
h3/2). Therefore, maxn ‖u(tn)− Un

h ‖∞ = O(k2 + h3/2).

Remark 5.2. Consider the linearized problem (3.25). In this case, the proof of
Proposition 5.2 is considerably simplified and yields ‖εn‖ + ‖en‖1 ≤ C(k2 + h3/2), 0
≤ n ≤M , and the other estimates of Proposition 5.2 without the stability restriction
k = O(h4/3). In other words, the linearized system is not stiff. This may also be
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verified by examining the spectrum of the spatial discretization operator of the
semidiscrete linearized system: In [6] it is proved that the eigenvalues are purely
imaginary and bounded by a constant independent of h. No stability restrictions
are needed in this case for the other two fully discrete schemes either.

Remark 5.3. Numerical experiments in [6] seem to indicate that the stability con-
dition k = O(h4/3) is also necessary in some sense. The numerical results were
stable and accurate when we took k = h4/3 but led to overflow in finite time when
we took k = h.

5.3. Fourth-order Runge-Kutta scheme with cubic splines. Our third ex-
ample is time stepping with the classical, fourth-order accurate four-stage explicit
Runge-Kutta scheme, written in the case of the ode y′ = f(t, y) in the three-step
form yn,1 = yn + k

2f(t
n + k

2 , y
n), yn,2 = yn + k

2f(t
n + k

2 , y
n,1), yn,3 = yn +

kf(tn + k, yn,2), yn+1 = yn + k
(
1
6f(t

n, yn) + 1
3f(t

n + k
2 , y

n,1) + 1
3f(t

n + k
2 , y

n,2)

+ 1
6f(t

n + k, yn,3)
)
. We will couple this time-stepping scheme with a space dis-

cretization that uses cubic splines on a uniform mesh on [0, 1]. We consider only
the case of (SCB), that of (CB) being analogous. As usual we let M be a positive
integer, k = T/M and tn = nk, for n = 0, 1, . . . ,M . For 0 ≤ n ≤ M we seek
(Hn

h , U
n
h ) ∈ S4

h × S4
h,0 approximations of η(tn), u(tn), and for 0 ≤ n ≤ M − 1

(Hn,j
h , Un,j

h ) ∈ S4
h × S4

h,0, j = 1,2,3, such that for 0 ≤ n ≤ M − 1,

(5.48)
Hn,j

h −Hn
h + kajP

(
Un,j−1
h + 1

2H
n,j−1
h Un,j−1

h

)
x
= 0 ,

Un,j
h − Un

h + kajA
(
Hn,j−1

hx + 3
2U

n,j−1
h Un,j−1

hx + 1
2H

n,j−1
h Hn,j−1

hx

)
= 0 ,

for j = 1, 2, 3 and

Hn+1
h −Hn

h + kP
[ 4∑
j=1

bj
(
Un,j−1
h + 1

2H
n,j−1
h Un,j−1

h

)]
x
= 0,(5.49)

Un+1
h − Un

h + kA
[ 4∑
j=1

bj
(
Hn,j−1

hx + 3
2U

n,j−1
hx Un,j−1

h + 1
2H

n,j−1
hx Hn,j−1

h

)]
= 0,

where Hn,0
h = Hn

h , U
n,0
h = Un

h , a1 = a2 = 1/2, a3 = 1, b1 = b4 = 1/6, b2 = b3 =
1/3, and

H0
h = Ihη0 , U0

h = Rhu0 .

(We have denoted again by P : L2 → S4
h the L2-projection operator, defined A :

L2 → S4
h,0 by (5.4) posed on S4

h,0, Ih as the interpolant in S4
h and Rh as the elliptic

projection onto S4
h,0.) The stability and convergence of the fully discrete scheme

require that k/h is sufficiently small. The proof is long and technical and may be
found in [6]. Here we just state the final result.

Proposition 5.3. Suppose that the solution (η, u) of (SCB) is sufficiently smooth
on [0, T ]. Let λ = k/h and (Hn

h , U
n
h ) be the solution of (5.48)-(5.49). Then, there

exists a positive constant λ0 and a constant C independent of k and h, such that
for λ ≤ λ0,

max
0≤n≤M

‖η(tn)−Hn
h ‖ ≤ C(k4 + h3.5

√
ln 1/h),

max
0≤n≤M

‖u(tn)− Un
h ‖1 ≤ C(k4 + h3).

An entirely similar result holds for (CB).
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6. Numerical experiments

In this section we present the results of some numerical experiments that we
performed in order to illustrate and explore further theoretical results that were
proved in the previous sections. The interested reader may find more numerical
results in [6].

Table 6.1. Errors and orders of convergence. (CB) system, stan-
dard Galerkin semidiscretization with piecewise linear, continuous
functions on a uniform mesh.

L2 − errors H1 − errors

N η order u order η order u order

80 0.6849(−2) 0.4259(−4) 0.1776(+1) 0.1192(−1)

160 0.2454(−2) 1.481 0.1051(−4) 2.019 0.1277(+1) 0.476 0.5880(−2) 1.019

240 0.1342(−2) 1.488 0.4652(−5) 2.010 0.1049(+1) 0.486 0.3902(−2) 1.011

320 0.8738(−3) 1.492 0.2611(−5) 2.007 0.9109 0.490 0.2920(−2) 1.008

400 0.6261(−3) 1.494 0.1669(−5) 2.006 0.8161 0.492 0.2333(−2) 1.006

480 0.4767(−3) 1.495 0.1158(−5) 2.005 0.7459 0.494 0.1942(−2) 1.005

520 0.4230(−3) 1.495 0.9864(−6) 2.004 0.7170 0.494 0.1792(−2) 1.004

6.1. Standard Galerkin semidiscretization with piecewise linear, continu-
ous functions. We first consider the case of uniform mesh with h = 1/N on [0, 1].
Table 6.1 shows the errors and the associated rates of convergence for increasing N
in the L2- and H1-norms at T = 1 of the approximation to the (CB) system with
suitable right-hand side and initial conditions so that its exact solution is given by

(6.1) η(x, t) = exp(2t)(cos(πx) + x+ 2) , u(x, t) = exp(−xt)x sin(πx) .

The system was integrated up to T = 1 with the classical, four-stage, fourth-order,
explicit Runge-Kutta method (henceforth referred to as RK4) of section 5.3, using
a time step k = h/10. We checked that temporal error of the discretization was
very small compared to the spatial error, so that the errors and rates of convergence
shown are essentially those of the semidiscrete problem (2.7), (3.2). The table sug-
gests that the L2 rates of convergence of η and u approach 3/2 and 2, respectively,
and that ‖u− uh‖1 = O(h), thus confirming the estimates of Theorem 3.1. It also
suggests that ‖η − ηh‖1 = O(h1/2). The convergence rates for the analogous prob-
lem for the (SCB) system were essentially the same. The observed maximum norm
errors were ‖η − ηh‖∞ = O(h), ‖u− uh‖∞ = O(h2); cf. [6].

We then integrated a suitably nonhomogeneous version of the (CB) system with
exact solution given by

(6.2) η(x, t) = exp(2t)(cos(πx) + x+ 2) , u(x, t) = exp(xt)(sin(πx) + x3 − x2) ,

on the quasiuniform mesh on [0, 1] given by h2i−1 = 1.2Δx, h2i = 0.8Δx, 1 ≤ i
≤ N/2, where hi = xi+1 − xi and Δx = 1/N . (The RK4 scheme was used for
time-stepping with k = Δx/10.) We integrated the system up to T = 0.4 starting
with the L2-projections of η0 and u0 on the finite element subspaces. (We checked
that the temporal error was much smaller than the spatial error.) Table 6.2(a)
shows the L2-errors for η and u and the associated rates of convergence at T =
0.4. The data strongly suggest that ‖η − ηh‖ = O(h) and ‖u− uh‖ = O(h2), thus
confirming the relevant theoretical result for η (cf. Proposition 2.1) and supporting
the conjecture that the L2 rate of convergence for u is actually equal to 2 even in
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Table 6.2. L2-errors and orders of convergence. (CB) system,
standard Galerkin semidiscretization with piecewise linear, con-
tinuous functions on a quasiuniform mesh with maxhi

minhi
= 1.5 (a),

maxhi

minhi
= 150 (b)

(a) (b)

N η order u order N η order u order

80 0.1277(−1) 0.7432(−4) 120 0.1942(−1) 0.1899(−3)

160 0.6383(−2) 1.000 0.1858(−4) 2.000 200 0.1155(−1) 1.017 0.6834(−4) 2.000

240 0.4258(−2) 0.999 0.8259(−5) 2.000 240 0.9600(−2) 1.014 0.4745(−4) 2.001

320 0.3194(−2) 0.999 0.4646(−5) 2.000 320 0.7176(−2) 1.012 0.2669(−4) 2.001

400 0.2556(−2) 0.999 0.2973(−5) 2.000 360 0.6371(−2) 1.010 0.2109(−4) 2.000

480 0.2131(−2) 0.999 0.2065(−5) 2.000 400 0.5729(−2) 1.009 0.1708(−4) 2.001

Table 6.3. Errors and orders of convergence. (SCB) system,
standard Galerkin semidiscretization with cubic splines on a uni-
form mesh.

L2 − errors H1 − errors

N η order u order η order u order

80 0.7178(−7) 0.5062(−8) 0.2215(−4) 0.2540(−5)

160 0.6393(−8) 3.489 0.3178(−9) 3.994 0.3829(−5) 2.533 0.3190(−6) 2.993

240 0.1553(−8) 3.490 0.6288(−10) 3.996 0.1379(−5) 2.519 0.9467(−7) 2.996

320 0.5691(−9) 3.490 0.1986(−10) 4.006 0.6699(−6) 2.510 0.3997(−7) 2.997

400 0.2612(−9) 3.489 0.8106(−11) 4.016 0.3831(−6) 2.505 0.2047(−7) 2.998

480 0.1382(−9) 3.490 0.4011(−11) 3.859 0.2428(−6) 2.501 0.1185(−7) 2.998

520 0.1046(−9) 3.488 0.2840(−11) 4.315 0.1988(−6) 2.499 0.9323(−8) 2.998

the case of the nonlinear problem; recall that the technique of proof of Theorem
3.1 in the case of a quasiuniform mesh gives a pessimistic bound of O(h3/2) for
‖u− uh‖; cf. Remark 3.3. These results are confirmed by the rates shown in Table
6.2(b), which was obtained by integrating the same problem with the same method
on the quasiuniform mesh on [0, 1] with h10i−9 = 0.02Δx, h10i−8 = 0.05Δx, h10i−7

= 0.08Δx, h10i−6 = 0.35Δx, h10i−5 = 0.5Δx, h10i−4 = h10i−3 = Δx, h10i−2 =
h10i−1 = 2Δx, h10i = 3Δx, 1 ≤ i ≤ N/10, and k = Δx/10. Similar results were
obtained for the (SCB) system.

6.2. Semidiscretization with cubic splines. We considered the nonhomoge-
neous (SCB) system and we discretized it on a uniform mesh using cubic splines for
the spatial discretization and RK4 in time with time step k = h/10, for which the
temporal discretization error was negligible in comparison with the spatial error.
We took a suitable right-hand side so that the exact solution of the system was
given by (6.2). The errors and orders of convergence produced by this numerical
experiment are shown in Table 6.3. The rates are close to the theoretical predic-
tions of Theorem 4.1. The table suggests that the L2 rate of convergence for η
is slightly less than 3.5, while that for u is close to four. It further suggests that
‖η − ηh‖1 = O(h2.5), ‖u − uh‖1 = O(h3) (agreeing with the second estimate of
(i) of Theorem 4.1). We also mention that the L∞ errors were measured to be
‖η−ηh‖∞ = O(h3) and ‖u−uh‖∞ = O(h4), and that the convergence rates from a
similar experiment with (CB) were practically the same; cf. [6]. When we plotted

the quantity κ := ‖η − ηh‖/(h3.5
√
ln 1/h) as a function of N = 1/h we observed
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that κ apparently approaches a constant close to 0.13 as N grows, which seems
to be consistent with the presence of a slow-varying modulation of h3.5 as h →
0. We close this paragraph with a remark on the “effect of the boundary” on the
error estimates of Theorem 4.1. The proofs of Lemma 4.4 and Theorem 4.1 suggest
that the accuracy of ψ in Lemma 4.4 and, e.g., that of ‖η − ηh‖ in Theorem 4.1
degenerate near the boundary of the interval. This is consistent with the results of
the following numerical experiment. We integrated in time the (SCB) system on
[0, 1] with suitable right-hand side and initial conditions so that the wave elevation
is given by the travelling Gaussian profile η(x, t) = 0.5 exp[−144(x − 0.5 − 0.2t)2]
and the velocity by u(x, t) = 6(

√
η + 1 − 1)x(x − 1). The support of the initial

η-profile is effectively contained in the interval [0.3, 0.5] and the wave moves to the
right and starts crossing the boundary at x = 1 at about t = 1.5 (see Figure 6.1).
In Table 6.4 we show the L2 errors of η, as N = 1/h increases, at the temporal
instances t = 1.0, 1.5, 2.0 and 2.5. The rates of convergence are practically equal
to four up to t = 1.5 but as η becomes nonzero at the boundary they fall to a value
consistent with the first inequality of (i) of Theorem 4.1.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

x

ηh

(a) ηh at t = 0.0

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
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0.1

0.2
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0.4
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0.6

x
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(b) ηh at t = 0.5

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

x

ηh

(c) ηh at t = 1.5

Figure 6.1. Travelling Gaussian η-profile. Nonhomogeneous
(SCB) system.

Table 6.4. L2-errors of η and orders of convergence. Example of
Figure 6.1.

time 1.0 1.5 2.0 2.5

N L2-error order L2-error order L2-error order L2-error order

250 1.0661(−08) 1.3596(−08) 1.5924(−08) 1.9906(−08)

500 6.6223(−10) 4.009 8.4585(−10) 4.007 1.0596(−09) 3.910 1.7594(−09) 3.500

750 1.3067(−10) 4.003 1.6706(−10) 4.000 2.2223(−10) 3.852 4.2637(−10) 3.496

1000 4.1350(−11) 4.000 5.2838(−11) 4.001 7.4176(−11) 3.814 1.5595(−10) 3.496

1250 1.6922(−11) 4.004 2.1710(−11) 3.986 3.1966(−11) 3.772 7.1471(−11) 3.497

1500 8.1703(−12) 3.994 1.0554(−11) 3.956 1.6213(−11) 3.724 3.7803(−11) 3.493
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