Further convergence results on the general iteratively regularized Gauss-Newton methods under the discrepancy principle

Author:
Qinian Jin

Journal:
Math. Comp. **82** (2013), 1647-1665

MSC (2010):
Primary 65J15, 65J20; Secondary 65H17

Published electronically:
December 31, 2012

MathSciNet review:
3042580

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We consider the general iteratively regularized Gauss-Newton

methods

**1.**A. B. Bakushinskiĭ,*On a convergence problem of the iterative-regularized Gauss-Newton method*, Zh. Vychisl. Mat. i Mat. Fiz.**32**(1992), no. 9, 1503–1509 (Russian, with Russian summary); English transl., Comput. Math. Math. Phys.**32**(1992), no. 9, 1353–1359 (1993). MR**1185952****2.**A. B. Bakushinskiĭ,*Iterative methods for solving nonlinear operator equations without regularity. A new approach*, Dokl. Akad. Nauk**330**(1993), no. 3, 282–284 (Russian); English transl., Russian Acad. Sci. Dokl. Math.**47**(1993), no. 3, 451–454. MR**1241957****3.**A. B. Bakushinsky and M. Yu. Kokurin,*Iterative methods for approximate solution of inverse problems*, Mathematics and Its Applications (New York), vol. 577, Springer, Dordrecht, 2004. MR**2133802****4.**Barbara Blaschke, Andreas Neubauer, and Otmar Scherzer,*On convergence rates for the iteratively regularized Gauss-Newton method*, IMA J. Numer. Anal.**17**(1997), no. 3, 421–436. MR**1459331**, 10.1093/imanum/17.3.421**5.**Albrecht Böttcher, Bernd Hofmann, Ulrich Tautenhahn, and Masahiro Yamamoto,*Convergence rates for Tikhonov regularization from different kinds of smoothness conditions*, Appl. Anal.**85**(2006), no. 5, 555–578. MR**2213075**, 10.1080/00036810500474838**6.**Heinz W. Engl, Martin Hanke, and Andreas Neubauer,*Regularization of inverse problems*, Mathematics and its Applications, vol. 375, Kluwer Academic Publishers Group, Dordrecht, 1996. MR**1408680****7.**Martin Hanke, Andreas Neubauer, and Otmar Scherzer,*A convergence analysis of the Landweber iteration for nonlinear ill-posed problems*, Numer. Math.**72**(1995), no. 1, 21–37. MR**1359706**, 10.1007/s002110050158**8.**Qinian Jin and Ulrich Tautenhahn,*On the discrepancy principle for some Newton type methods for solving nonlinear inverse problems*, Numer. Math.**111**(2009), no. 4, 509–558. MR**2471609**, 10.1007/s00211-008-0198-y**9.**Qinian Jin and Ulrich Tautenhahn,*Inexact Newton regularization methods in Hilbert scales*, Numer. Math.**117**(2011), no. 3, 555–579. MR**2772419**, 10.1007/s00211-010-0342-3**10.**Barbara Kaltenbacher,*Some Newton-type methods for the regularization of nonlinear ill-posed problems*, Inverse Problems**13**(1997), no. 3, 729–753. MR**1451018**, 10.1088/0266-5611/13/3/012

Retrieve articles in *Mathematics of Computation*
with MSC (2010):
65J15,
65J20,
65H17

Retrieve articles in all journals with MSC (2010): 65J15, 65J20, 65H17

Additional Information

**Qinian Jin**

Affiliation:
Department of Mathematics, Virginia Tech, Blacksburg, Virginia 24061

Address at time of publication:
Mathematical Sciences Institute, The Australian National University, Canberra, ACT 0200, Australia

Email:
qnjin@math.vt.edu, Qinian.Jin@anu.edu.au

DOI:
http://dx.doi.org/10.1090/S0025-5718-2012-02665-2

Keywords:
Nonlinear inverse problems,
the general iteratively regularized Gauss-Newton methods,
the discrepancy principle,
convergence,
order optimality

Received by editor(s):
June 30, 2010

Received by editor(s) in revised form:
August 22, 2011

Published electronically:
December 31, 2012

Article copyright:
© Copyright 2012
American Mathematical Society

The copyright for this article reverts to public domain 28 years after publication.