Remote Access Mathematics of Computation
Green Open Access

Mathematics of Computation

ISSN 1088-6842(online) ISSN 0025-5718(print)

Request Permissions   Purchase Content 


On the generalized Feng-Rao numbers of numerical semigroups generated by intervals

Authors: M. Delgado, J. I. Farrán, P. A. García-Sánchez and D. Llena
Journal: Math. Comp. 82 (2013), 1813-1836
MSC (2010): Primary 20M14, 11Y55, 11T71
Published electronically: January 28, 2013
MathSciNet review: 3042586
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We give some general results concerning the computation of the generalized Feng-Rao numbers of numerical semigroups. In the case of a numerical semigroup generated by an interval, a formula for the $ r^{\mathrm {th}}$ Feng-Rao number is obtained.

References [Enhancements On Off] (What's this?)

  • 1. A. Barbero and C. Munuera, ``The weight hierarchy of Hermitian codes'', SIAM J. Discrete Math. vol. 13, no. 1, pp. 79-104 (2000). MR 1737936 (2001g:94021)
  • 2. A. Campillo and J. I. Farrán, ``Computing Weierstrass semigroups and the Feng-Rao distance from singular plane models'', Finite Fields and their Applications 6, pp. 71-92 (2000). MR 1738217 (2001a:14026)
  • 3. A. Campillo, J. I. Farrán and C. Munuera, ``On the parameters of algebraic geometry codes related to Arf semigroups'', IEEE Trans. of Information Theory 46, pp. 2634-2638 (2000). MR 1806823 (2001k:94073)
  • 4. S. T. Chapman, P. A. García-Sánchez and D. Llena, ``The catenary and tame degree of a numerical semigroup'', Forum Math. 21, pp. 117-129 (2009). MR 2494887 (2010i:20081)
  • 5. M. Delgado, P. A. García-Sánchez and J. Morais, ``NumericalSgps'', A GAP package for numerical semigroups, current version number 0.97 (2011). Available via
  • 6. J. I. Farrán, P. A. García-Sánchez and D. Llena, ``On the Feng-Rao numbers'', Actas de las VII Jornadas de Matemática Discreta y Algorítmica, pp. 321-333 (2010).
  • 7. J. I. Farrán and C. Munuera, ``Goppa-like bounds for the generalized Feng-Rao distances'', Discrete Applied Mathematics 128/1, pp. 145-156 (2003). MR 1991422 (2004f:94115)
  • 8. G. L. Feng and T. R. N. Rao, ``Decoding algebraic-geometric codes up to the designed minimum distance'', IEEE Trans. Inform. Theory 39, pp. 37-45 (1993). MR 1211489 (93m:94031)
  • 9. P. Heijnen and R. Pellikaan, ``Generalized Hamming weights of $ q$-ary Reed-Muller codes'', IEEE Trans. Inform. Theory 44, pp. 181-197 (1998). MR 1486657 (99a:94068)
  • 10. T. Helleseth, T. Kløve and J. Mykkleveit, ``The weight distribution of irreducible cyclic codes with block lengths $ n_{1}((q^{l}-1)/N)$'', Discrete Math., vol. 18, pp. 179-211 (1977). MR 0446717 (56:5041)
  • 11. T. Høholdt, J. H. van Lint and R. Pellikaan, ``Algebraic Geometry codes'', in Handbook of Coding Theory, V. Pless, W.C. Huffman and R.A. Brualdi, Eds., pp. 871-961 (vol. 1), Elsevier, Amsterdam (1998). MR 1667946
  • 12. C. Kirfel and R. Pellikaan, ``The minimum distance of codes in an array coming from telescopic semigroups'', IEEE Trans. Inform. Theory 41, pp. 1720-1732 (1995). MR 1391031 (97e:94015)
  • 13. J. C. Rosales and P. A. García-Sánchez, ``Numerical Semigroups'', Developments in Maths. vol. 20, Springer (2010).
  • 14. V. Wei, ``Generalized Hamming weights for linear codes'', IEEE Trans. Inform. Theory 37, pp. 1412-1428 (1991). MR 1136673 (92i:94019)

Similar Articles

Retrieve articles in Mathematics of Computation with MSC (2010): 20M14, 11Y55, 11T71

Retrieve articles in all journals with MSC (2010): 20M14, 11Y55, 11T71

Additional Information

M. Delgado
Affiliation: CMUP, Departamento de Matematica, Faculdade de Ciencias, Universidade do Porto, Rua do Campo Alegre 687, 4169-007 Porto, Portugal

J. I. Farrán
Affiliation: Departamento de Matemática Aplicada, Escuela Universitaria de Informática, Campus de Segovia - Universidad de Valladolid, Plaza de Santa Eulalia 9 y 11 - 40005 Segovia, Spain

P. A. García-Sánchez
Affiliation: Departamento de Álgebra, Universidad de Granada, 18071 Granada, España

D. Llena
Affiliation: Departamento de Geometría, Topología y Química Orgánica, Universidad de Almería, 04120 Almería, España

Keywords: AG codes, weight hierarchy, numerical semigroups, order bounds, Goppa-like bounds, Feng-Rao numbers.
Received by editor(s): May 19, 2011
Received by editor(s) in revised form: November 22, 2011
Published electronically: January 28, 2013
Additional Notes: The first author was partially funded by the European Regional Development Fund through the program COMPETE and by the Portuguese Government through the FCT - Fundação para a Ciência e a Tecnologia under the project PEst-C/MAT/UI0144/2011.
The second author was supported by the project MICINN-MTM-2007-64704.
The third and fourth authors were supported by the projects MTM2010-15595, FQM-343 and FEDER funds
The third author was also supported by the project FQM-5849.
Article copyright: © Copyright 2013 American Mathematical Society

American Mathematical Society