Remote Access Mathematics of Computation
Green Open Access

Mathematics of Computation

ISSN 1088-6842(online) ISSN 0025-5718(print)

 
 

 

On the spectral vanishing viscosity method for periodic fractional conservation laws


Authors: Simone Cifani and Espen R. Jakobsen
Journal: Math. Comp. 82 (2013), 1489-1514
MSC (2010): Primary 65M70, 35K59, 35R09; Secondary 65M15, 65M12, 35K57, 35R11
DOI: https://doi.org/10.1090/S0025-5718-2013-02690-7
Published electronically: March 19, 2013
MathSciNet review: 3042572
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We introduce and analyze a spectral vanishing viscosity approximation of periodic fractional conservation laws. The fractional part of these equations can be a fractional Laplacian or other non-local operators that are generators of pure jump Lévy processes. To accommodate for shock solutions, we first extend to the periodic setting the Kružkov-Alibaud entropy formulation and prove well-posedness. Then we introduce the numerical method, which is a non-linear Fourier Galerkin method with an additional spectral viscosity term. This type of approximation was first introduced by Tadmor for pure conservation laws. We prove that this non-monotone method converges to the entropy solution of the problem, that it retains the spectral accuracy of the Fourier method, and that it diagonalizes the fractional term reducing dramatically the computational cost induced by this term. We also derive a robust $ L^1$-error estimate, and provide numerical experiments for the fractional Burgers' equation.


References [Enhancements On Off] (What's this?)

  • 1. N. Alibaud.
    Entropy formulation for fractal conservation laws.
    J. Evol. Equ. 7 (2007), no. 1, 145-175. MR 2305729 (2009d:35213)
  • 2. N. Alibaud, J. Droniou and J. Vovelle.
    Occurence and non-appearance of shocks in fractal Burgers equations.
    J. Hyperbolic Differ. Equ. 4 (2007), no. 3, 479-499. MR 2339805 (2008i:35198)
  • 3. D. Applebaum
    Levy processes and stochastic calculus.
    Cambridge University Press, Cambridge, 2009. MR 2512800 (2010m:60002)
  • 4. G. Ben-Yu.
    Spectral methods and their applications.
    World Scientific Publishing Co., River Edge (NJ), 1998. MR 1641586 (2000b:65194)
  • 5. P. Biler, T. Funaki, and W. A. Woyczynski.
    Fractal Burgers equations.
    J. Differential Equations, 148(1):9-46, 1998. MR 1637513 (99g:35111)
  • 6. C. Canuto, M. Y. Hussaini, A. Quarteroni, T. A. Zang.
    Spectral methods.
    Springer-Verlag, Berlin, 2006. MR 2223552 (2007c:65001)
  • 7. C. H. Chan and M. Czubak
    Regularity of solutions for the critical $ N$-dimensional Burgers' equation.
    Ann. Inst. H. Poincaré Anal. Non Lin. 27 (2010), no. 2, 471-501. MR 2595188 (2011e:35332)
  • 8. C. H. Chan, M. Czubak, L. Silvestre.
    Eventual regularization of the slightly supercritical fractional Burgers equation.
    Discrete Contin. Dyn. Syst., 27(2):847-861, 2010. MR 2600693 (2011a:35551)
  • 9. H. Dong, D. Du, and D. Li.
    Finite time singularities and global well-posedness for fractal Burgers equations.
    Indiana Univ. Math. J., 58 (2009), 807-821. MR 2514389 (2010i:35320)
  • 10. C. G. Chen, Q. Du, E. Tadmor.
    Spectral viscosity approximations to multidimensional scalar conservation laws.
    Math. Comp., 61(204):629-643, 1993. MR 1185240 (94b:35168)
  • 11. S. Cifani.
    On nonlinear fractional convection-diffusion equations.
    PhD Thesis 2011:282, NTNU, 2011.
  • 12. S. Cifani and E. R. Jakobsen.
    Entropy solution theory for fractional degenerate convection-diffusion equations.
    Ann. Inst. H. Poincaré Anal. Non Lineaire, 28(3):413-441, 2011. MR 2795714
  • 13. S. Cifani, E. R. Jakobsen, and K. H. Karlsen.
    The discontinuous Galerkin method for fractal conservation laws.
    IMA J. Numer. Anal., 31(3):1090-1122, 2011. MR 2832791
  • 14. P. Clavin.
    Instabilities and nonlinear patterns of overdriven detonations in gases.
    Nonlinear PDE's in Condensed Matter and Reactive Flows.
    Kluwer, 49-97, 2002.
  • 15. R. Cont and P. Tankov
    Financial modelling with jump processes.
    Chapman & Hall/CRC, Boca Raton, FL, 2004. MR 2042661 (2004m:91004)
  • 16. J. Droniou.
    A numerical method for fractal conservation laws.
    Math. Comp., 79:95-124, 2010. MR 2552219 (2011d:65251)
  • 17. J. Droniou, T. Gallouët and J. Vovelle.
    Global solution and smoothing effect for a non-local regularization of a hyperbolic equation.
    J. Evol. Equ. 4 (2003), no. 3, 479-499. MR 2019032 (2004m:35168)
  • 18. J. Droniou and C. Imbert.
    Fractal first order partial differential equations.
    Arch. Ration. Mech. Anal., 182(2):299-331, 2006. MR 2259335 (2009c:35037)
  • 19. L. C. Evans.
    Partial differential equations.
    Graduate Studies in Mathematics, 19, AMS, Providence, RI, 2010. MR 2597943 (2011c:35002)
  • 20. A. Dedner, C. Rohde.
    Numerical approximation of entropy solutions for hyperbolic integro- differential equations.
    Numer. Math., 97(3):441-471, 2004. MR 2059465 (2005f:45016)
  • 21. M. G. Garroni and J. L. Menaldi
    Second order elliptic integro-differential problems.
    Chapman & Hall/CRC, Boca Raton, FL, 2002. MR 1911531 (2003i:35002)
  • 22. H. Holden and N. H. Risebro.
    Front Tracking for Hyperbolic Conservation Laws.
    Applied Mathematical Sciences, 152, Springer, 2007. MR 1912206 (2003e:35001)
  • 23. H. Jeffreys and S. Bertha.
    Methods of mathematical physics.
    Cambridge University Press, Cambridge, 1999. MR 1744997 (2000i:00004)
  • 24. K. H. Karlsen and S. Ulusoy.
    Stability of entropy solutions for Levy mixed hyperbolic-parabolic equations.
    Electron. J. Diff. Eqns., 2011 (2011), no. 116, 1-23. MR 2836797
  • 25. A. Kiselev, F. Nazarov, and R. Shterenberg.
    Blow up and regularity for fractal Burgers equation.
    Dyn. Partial Differ. Equ. 5 (2008), no. 3, 211-240. MR 2455893 (2009k:35264)
  • 26. S. N. Kružkov.
    First order quasi-linear equations in several independent variables.
    Math. USSR Sbornik, 10(2):217-243, 1970.
  • 27. N. N. Kuznetsov.
    Accuracy of some approximate methods for computing the weak solutions of a first-order quasi-linear equation.
    USSR. Comput. Math. Phys. 16 (1976), 105-119.
  • 28. P. Loya.
    Dirichlet and Fresnel integrals via iterated integration.
    Mathematics Magazine 78 (2005), no. 1, 63-67.
  • 29. Y. Maday, E. Tadmor.
    Analysis of the spectral vanishing viscosity method for periodic conservation laws.
    SIAM J. Numer. Anal. 26 (1989), no. 4, 854-870. MR 1005513 (90f:65153)
  • 30. J. Malek, J. Necas, M. Rokyta, M. Ruzicka.
    Weak and measure-valued solutions to evolutionary PDEs.
    Chapman & Hall, London, 1996. MR 1409366 (97g:35002)
  • 31. K. Sato.
    Lévy processes and infinitely divisible distributions.
    Cambridge Studies in Advanced Mathematics, 68, Cambridge University Press, 1999.
  • 32. S. Schochet.
    The rate of convergence of spectral-viscosity methods for periodic scalar conservation laws.
    SIAM J. Numer. Anal. 27 (1990), no. 5, 1142-1159. MR 1061123 (91g:65207)
  • 33. E. Tadmor.
    Convergence of spectral methods for nonlinear conservation laws.
    SIAM J. Numer. Anal. 26 (1989), no. 1, 30-44. MR 977947 (90e:65130)
  • 34. E. Tadmor.
    Total variation and error estimates for spectral viscosity approximations.
    Math. Comp. 60 (1993), no. 201, 245-256. MR 1153170 (93d:35098)
  • 35. M. E. Taylor.
    Partial differential equations III. Nonlinear equations.
    Springer-Verlag, New York, 1997. MR 1477408 (98k:35001)
  • 36. W. Woyczyński.
    Lévy processes in the physical sciences.
    Lévy processes, 241-266, Birkhäuser, Boston, 2001. MR 1833700 (2002d:82029)

Similar Articles

Retrieve articles in Mathematics of Computation with MSC (2010): 65M70, 35K59, 35R09, 65M15, 65M12, 35K57, 35R11

Retrieve articles in all journals with MSC (2010): 65M70, 35K59, 35R09, 65M15, 65M12, 35K57, 35R11


Additional Information

Simone Cifani
Affiliation: Department of Mathematics, Norwegian University of Science and Technology (NTNU), N-7491 Trondheim, Norway
Email: simone.cifani@math.ntnu.no

Espen R. Jakobsen
Affiliation: Department of Mathematics, Norwegian University of Science and Technology (NTNU), N-7491 Trondheim, Norway
Email: erj@math.ntnu.no

DOI: https://doi.org/10.1090/S0025-5718-2013-02690-7
Keywords: Fractional/fractal conservation laws, entropy solutions, Fourier spectral methods, spectral vanishing viscosity, convergence, error estimate.
Received by editor(s): November 15, 2010
Received by editor(s) in revised form: November 29, 2011
Published electronically: March 19, 2013
Additional Notes: This research was supported by the Research Council of Norway (NFR) through the project “Integro-PDEs: Numerical Methods, Analysis, and Applications to Finance”.
Article copyright: © Copyright 2013 American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.

American Mathematical Society