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FURTHER ANALYSIS OF KAHAN’S ALGORITHM FOR THE

ACCURATE COMPUTATION OF 2× 2 DETERMINANTS

CLAUDE-PIERRE JEANNEROD, NICOLAS LOUVET, AND JEAN-MICHEL MULLER

Abstract. We provide a detailed analysis of Kahan’s algorithm for the ac-
curate computation of the determinant of a 2 × 2 matrix. This algorithm re-
quires the availability of a fused multiply-add instruction. Assuming radix-β,
precision-p floating-point arithmetic with β even, p ≥ 2, and barring overflow
or underflow we show that the absolute error of Kahan’s algorithm is bounded
by (β+1)/2 ulps of the exact result and that the relative error is bounded by

2u with u = 1
2
β1−p the unit roundoff. Furthermore, we provide input values

showing that i) when β/2 is odd—which holds for 2 and 10, the two radices
that matter in practice—the absolute error bound is optimal; ii) the relative
error bound is asymptotically optimal, that is, for such input the ratio (rela-
tive error)/2u has the form 1 − O(β−p). We also give relative error bounds
parametrized by the relative order of magnitude of the two products in the
determinant, and we investigate whether the error bounds can be improved
when adding constraints: When the products in the determinant have oppo-
site signs, which covers the computation of a sum of squares, or when Kahan’s
algorithm is used for computing the discriminant of a quadratic equation.

1. Introduction

Expressions of the form ad± bc with a, b, c, d some floating-point numbers arise
naturally in many numerical computations. Examples include complex multipli-
cation and division; discriminant of quadratic equations; cross-products and 2D
determinants (e.g., for geometric predicates [14]). Unfortunately, the naive way of
computing ad± bc may lead to very inaccurate results, due to catastrophic cancel-
lations. Hence it is of interest to compute ad± bc accurately.

Concerning complex multiplication and division, the result may be inaccurate at
least when we consider the real part and imaginary part of a complex product or
quotient separately. For instance, for the complex product z = z1z2, assuming ẑ is
the computed value, the naive method may lead to large values of the component-
wise relative errors |�(ẑ)−�(z)|/|�(z)| and |�(ẑ)−�(z)|/|�(z)|, although Brent,
Percival, and Zimmermann [2] have shown that in precision-p binary floating-point

arithmetic, the normwise relative error |ẑ − z|/|ẑ| is always bounded by
√
5 · 2−p

(which is a very sharp bound; for instance, in IEEE 754 binary32 arithmetic, they

could build examples for which the normwise relative error is 2−p ·
√
4.9999899864).

An algorithm was proposed by Kahan [12] for the accurate computation of the
discriminant b2−ac of a quadratic equation ax2−2bx+ c = 0 with binary floating-
point coefficients. Boldo [1] then gave a formal proof of the high relative accuracy
of this algorithm, assuming IEEE 754 double-precision floating-point arithmetic [8],
and allowing underflows in the intermediate computations.
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Another algorithm for the computation of discriminants using specifically the
fused multiply-add (FMA) instruction is stated in [11, p. 15]. The FMA instruc-
tion, which evaluates expressions of the form ab+c with one rounding error instead
of two, was first implemented on the IBM RS/6000 processor [7, 15]. It is currently
available on several processors like the IBM PowerPC [9], the HP/Intel Itanium [3],
the Fujitsu SPARC64 VI, and the STI Cell. More importantly, the FMA instruction
is included in the new IEEE 754-2008 standard for floating-point arithmetic [8], so
that within a few years, it will probably be available on most general-purpose pro-
cessors. Experiments are provided in [11] that illustrate the high relative accuracy
of the algorithm, but no error bound is provided.

For computing ad±bc, an algorithm attributed to Kahan by Higham [5, p. 65] can
be used when an FMA instruction is available. Kahan’s algorithm for computing
ad− bc is Algorithm 1 below. Here and hereafter, for any real number t we denote
by RN(t) the floating-point number in radix β and precision p that is nearest to it
and, in case of a tie, whose least significant digit is even (roundTiesToEven in [8]).

Algorithm 1 Kahan’s way to compute x = ad− bc with fused multiply-adds.

ŵ ← RN(bc)
e ← RN(ŵ − bc) // this operation is exact: e = ŵ − bc.

f̂ ← RN(ad− ŵ)

x̂ ← RN(f̂ + e)
return x̂

Thus, Kahan’s algorithm can be implemented in IEEE floating-point arithmetic
using one multiplication, two independent FMA operations, and one addition. The
fact that the error ŵ − bc is computed exactly is a classic property of the FMA
operation: it can be traced back at least to 1996 in Kahan’s lecture notes [10] and
is mentioned later on by several authors (see for example [13, Fig. 2] and [4, 16]),
but was probably known at the time it was decided to include the FMA in the
instruction set of the IBM RS/6000 processor.

Higham [5, solution to Problem 2.25] (or Problem 2.27 in [6]) shows that in the
absence of underflow and overflow, Algorithm 1 approximates x = ad − bc with
high relative accuracy as long as u|bc| � |x| does not hold, where u = 1

2β
1−p is

the unit roundoff. The purpose of this paper is to establish—again, in the absence
of underflow and overflow—that Kahan’s algorithm always achieves high relative
accuracy, and to give tight bounds on both the relative error |x̂ − x|/|x| and the
absolute error |x̂− x|.

Absolute errors will be bounded by ulps of the exact result, using the function
t �→ ulp(t) defined over the reals as follows [2]: ulp(0) = 0 and for t nonzero, ulp(t)
is the unique integer power of β such that βp−1 ≤ |t|/ulp(t) < βp. In particular,
u = 1

2ulp(1) and

(1.1) ulp(t) ≤ 2u|t| for any real number t.

Main results. Barring underflow and overflow and under mild assumptions on
β and p, we show that our absolute error bound is optimal and that our relative
error bound is asymptotically optimal. Here, optimal means that the error bound
is attainable, and asymptotically optimal means there are inputs a, b, c, d for which
the ratio (error)/(error bound) has the form 1−O(β−p).
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Theorem 1.1. If no underflow or overflow occurs then |x̂ − x| ≤ β+1
2 ulp(x) and,

when β/2 is odd and p ≥ 4, this absolute error bound is optimal.

Combining this result with (1.1), we immediately deduce the relative error bound
(β + 1)u. However, the next theorem shows that the factor β + 1 can be improved
to 2, which is both smaller and independent of the radix, and that this constant is
essentially the best possible.

Theorem 1.2. If no underflow or overflow occurs then |x̂− x| ≤ 2u|x| and, when
β is even, this relative error bound is asymptotically optimal.

Note that for both theorems the assumptions on β and p are satisfied by all the
formats of IEEE floating-point arithmetic [8].

Remark 1.3. A floating-point number t̂ is a faithful rounding of a real number t if it
equals t or one of the two floating-point numbers surrounding t [17]. In particular,
if t̂ is a faithful rounding of t then |t̂−t| ≤ ulp(t). Theorem 1.1 implies that Kahan’s

algorithm sometimes generates an absolute error as large as β+1
2 ulps, which shows

that a faithfully rounded result is not always returned.

Outline. This paper is organized as follows:

• Section 2 gives the main definitions and assumptions, recalls the classic
error analysis of Algorithm 1, and introduces several useful properties.

• In Section 3 we show that Algorithm 1 is always accurate by bounding the
relative error by (β + 1)u + βu2, and the absolute error by β ulps of x.
Although we provide sharper bounds later on in the paper, we have kept
this section because the properties it contains will be needed in the next
sections and also because these first bounds are relatively easy to derive.

• Section 4 presents our two main results: the absolute error is bounded by
(β + 1)/2 ulps of x (Theorem 1.1) and the relative error is bounded by 2u
(Theorem 1.2).

• In Section 5 we give relative error bounds parametrized by the difference
σ = (exponent of ad) − (exponent of bc). These bounds are smaller than
2u as soon as σ ≤ −p − 3 or σ ≥ 3, and tend to u as |σ| → ∞. Such
results should be useful if, depending on the problem under consideration,
we know further that the inputs satisfy |ad| � |bc| or |ad| � |bc|.

• Section 6 concludes with some special cases. First, we consider the case
of the computation of ad − bc when ad and bc have opposite signs. This
situation covers in particular the computation of a2+b2, which occurs when
computing 2D Euclidean norms and performing complex divisions. Then we
consider, in binary floating-point arithmetic, the special case of evaluation
of a2 − bc or ad− b2, which covers the computation of the discriminant of
a quadratic equation.

2. Preliminaries

2.1. Definitions and assumptions. Throughout this paper F denotes the set
{0} ∪ {S ·βe−p+1 : S, e ∈ Z, βp−1 ≤ |S| < βp} of radix-β, precision-p floating-point
numbers, assuming that

β is even, p ≥ 2, and the exponent range is unbounded;
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in addition, we assume that the inputs a, b, c, d to Algorithm 1 belong to F. The

variables ŵ, e, f̂ , x̂ obtained by rounding to nearest are thus also in F. All the
results in this paper are proved under such assumptions and remain true for IEEE
floating-point arithmetic as long as underflow or overflow does not occur, since
β ∈ {2, 10} and p ≥ 7 for all the standard formats [8, p. 13].

Assuming an unbounded exponent range implies in particular that

|RN(t)− t| ≤ u|t| for any real number t.

Hence the exact result t of a floating-point operation like multiply, add, or fused
multiply-add is related to its correctly-rounded value t̂ = RN(t) by the identity
below, referred to as the standard model of floating-point arithmetic [6, p. 40]:

(2.1) t̂ = t (1 + δ), |δ| ≤ u.

The standard model is not the only property of rounding to nearest, and we also
have the following:

(i) |RN(t)− t| = mins∈F |s− t| ≤ 1
2ulp(t);

(ii) RN(βkt) = βkRN(t) for any k ∈ Z;
(iii) |RN(t)| = RN(|t|).

Furthermore, by definition of F,

(iv) the significand of any s in F\{0} is an integer such that βp−1 ≤ |S| < βp.

While Section 2.2 uses just the standard model, all our results from Section 2.3
onwards exploit at least one of the lower level properties (i)–(iv).

Finally, besides the variables x, ŵ, e, f̂ , x̂ introduced in Algorithm 1, we define

f = ad− ŵ,

from which it follows that

f̂ = RN(f) and x = f + e.

Our analyses will repeatedly use f as well as the error terms ε1 and ε2 given by

(2.2) f̂ = f + ε1 and x̂ = f̂ + e+ ε2.

From the last three identities we deduce that

(2.3) x̂− x = ε1 + ε2;

also, for |ε1| and |ε2| being the absolute errors due to rounding f and f̂ + e to
nearest, we have

(2.4) |ε1| ≤ 1
2ulp(f) and |ε2| ≤ 1

2ulp
(
f̂ + e

)
.

2.2. Rounding error analysis in the standard model. By using the standard
model (2.1), Higham [6, solution to Problem 2.27] concludes that Kahan’s algorithm
offers high relative accuracy as long as u|bc| �� |x|. More precisely, we have the
bound

(2.5) |x̂− x| ≤ J |x| with J = 2u+ u2 + (u+ u2)u|bc|/|x|,
which can be derived as follows: since x̂ = RN

(
f̂ + e

)
and f̂ = RN(f),

x̂ =
(
f(1 + δ1) + e

)
(1 + δ2), |δ1|, |δ2| ≤ u;

using f = x− e, we deduce that x̂− x = x(δ1 + δ2 + δ1δ2)− eδ1(1 + δ2) and then

(2.6) |x̂− x| ≤ (2u+ u2)|x|+ (u+ u2)|e|;
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finally, applying |e| = |RN(bc)− bc| ≤ u|bc| to (2.6) leads to the bound in (2.5).
However, with such a bound, high relative accuracy is ensured a priori only

when u|bc| is not “large” compared to |x|, which is not always the case. To see this,
consider for example

(2.7) (a, b, c, d) = (N − 1, N,N,N + 1) with N = βp − 1.

One may check that a, b, c, d ∈ F and that |bc|/|x| = N2 ≥ (u−1 − 1)2. Thus, the
relative error bound J can be as large as 1 + u + u3 > 1 and one cannot even
conclude that Algorithm 1 always computes the sign of the result correctly.

Of course, that this bound can be large does not mean that the maximum error
must be large too. In the above example the computation is in fact exact, since
both x and x̂ are equal to −1. Although Algorithm 1 does not usually provide the
exact answer, we shall see in Section 3.1 that it always yields an approximation
having high relative accuracy. To arrive at this conclusion we will bound |e|/|x|
independently of u−1 and then combine this bound with the inequality in (2.6).

2.3. Preliminary properties. Our analysis of Kahan’s algorithm will use several
basic properties which we introduce now. First, in the special cases where bc or
f is a floating-point number, Algorithm 1 behaves ideally: as the property below
shows, x̂ is the correctly-rounded result and thus |x̂− x| ≤ 1

2ulp(x) ≤ u|x|.

Property 2.1. If bc ∈ F or f ∈ F then x̂ = RN(x).

Proof. If bc ∈ F then e = 0, which implies x̂ = f̂ = RN(x). If f ∈ F then f̂ = ad−ŵ,

so that f̂ + e = x and then x̂ = RN(x). �

Therefore, we shall focus most of our efforts on analysing Algorithm 1 under the
following genericity condition:

(C) bc �∈ F and f �∈ F.

The next property gives two useful consequences of that condition:

Property 2.2. If Condition (C) holds then abcd �= 0 and x �= 0.

Proof. If ad = 0 then f = −ŵ belongs to F, so that f �∈ F implies ad �= 0. Since
bc �∈ F implies bc �= 0, we deduce that (C) implies abcd �= 0. If x = 0 then ad = bc
and thus f = −e. Since e belongs to F, we conclude that f �∈ F implies x �= 0. �

When the floating-point numbers a, b, c, d are nonzero, which is implied by
Condition (C), they can be written a = Aβea−p+1, b = B βeb−p+1, c = C βec−p+1,
d = Dβed−p+1 for some integers ea, eb, ec, ed, A,B,C,D such that

(2.8a) βp−1 ≤ |A|, |B|, |C|, |D| < βp.

Thus, the ratio ad/bc has the form AD/BC · βσ with σ ∈ Z given by

(2.8b) σ = ea + ed − eb − ec.

Furthermore, we can now associate to ŵ, e, f , f̂ , x̂, and x the following integers:

(2.9a) Ŵ = RN(BC) and E =

{
Ŵ −BC if σ ≥ 0,(
Ŵ −BC

)
β−σ if σ < 0;

(2.9b) F =

{
ADβσ − Ŵ if σ ≥ 0,

AD − Ŵβ−σ if σ < 0,
and F̂ = RN(F );
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(2.9c) X = F + E and X̂ = RN(F̂ + E).

Property 2.3. Assume abcd �= 0 and let E,F, F̂ ,X, X̂ be defined as in (2.9). Then

there exists μ ∈ Z such that e = Eβμ, f = Fβμ, f̂ = F̂ βμ, x = Xβμ, and x̂ = X̂βμ.

Proof. Let μ = min{ea + ed, eb + ec}− 2p+2. Assume first that σ ≥ 0. Then X =
ADβσ−BC and μ = eb+ec−2p+2, from which it follows that Xβμ = ad−bc = x,
as wanted. Furthermore, since RN(BC)βμ = RN(BCβμ) = RN(bc), we deduce
that Fβμ = ad − ŵ = f . It then follows that Eβμ = (X − F )βμ = x − f = e,

and that F̂ βμ = RN(Fβμ) = RN(f) = f̂ . Finally, X̂βμ = RN(F̂ βμ + Eβμ) =

RN(f̂ + e) = x̂. The case where σ < 0 can be handled similarly, using now the
identities X = AD −BCβ−σ and μ = ea + ed − 2p+ 2. �

We conclude these preliminaries with three facts that will be useful in the sequel:

(2.10a) β2p−2 ≤ |AD|, |BC| ≤ β2p − 2βp + 1,

(2.10b) ulp(BC) =

{
βp−1 if |BC| < β2p−1,
βp otherwise,

(2.10c) β2p−2 ≤ |Ŵ | = RN(|BC|) ≤ β2p − βp.

3. Kahan’s algorithm is always highly accurate: First bounds

3.1. Bounding the relative error by (β + 1)u + βu2. We show in this section
that Algorithm 1 always approximates x to high relative accuracy. For this, we
begin by proving the following result.

Lemma 3.1. If Condition (C) holds then |e|/|x| ≤ β − 1.

Proof. By Property 2.2 the numbers a, b, c, d, and x are nonzero, and using Prop-
erty 2.3 gives |e|/|x| = |E|/|X|. Furthermore, since f �∈ F we have |F | > βp. To
show that |E|/|X| is bounded by β − 1 we consider separately the following three
cases, depending on the value of σ.
� If σ ≥ 0 then E = RN(BC)−BC and, since ulp(BC) ≤ βp, we have |E| ≤ 1

2β
p.

Hence |X| ≥ |F | − |E| > βp − 1
2β

p = 1
2β

p, from which we deduce that |E| < |X|.
Since β ≥ 2, this implies |E| ≤ (β − 1)|X|.
� Assume now that σ = −1. In this case we have E =

(
RN(BC) − BC

)
β. If

|BC| ≤ β2p−1 then |E| ≤ 1
2β

p−1 ·β = 1
2β

p, and we proceed as for the case “σ ≥ 0”.

If |BC| > β2p−1 then, using X = AD − BCβ and |A|, |D| ≤ βp − 1 we see that
|X| ≥ β|BC| − |AD| > β · β2p−1 − (β2p − 2βp +1) = 2βp − 1; hence |X| ≥ 2βp and
since in this case |E| ≤ 1

2β
p ·β = 1

2β
p+1, we obtain |E|/|X| ≤ β/4, which for β ≥ 2

implies |E| ≤ (β − 1)|X|.
� Assume that σ ≤ −2. Setting i = −σ, we have i ≥ 2 and |E| ≤ 1

2β
p+i. Since

bc �∈ F we have |B|, |C| > βp−1; from X = AD−BCβi and |A|, |D| < βp it follows
that |X| ≥ (βp−1 + 1)2βi − (βp − 1)2. Noting that βi − 1 ≥ 0, we obtain

(3.1) |X| ≥ βp+iy, y := βp−2 + 2β−1 − (βp − 2)β−i.

For β, i ≥ 2 we have β−i ≤ β−2 and thus y ≥ 2β−1. Hence |X| ≥ 2βp+i−1, which
together with |E| ≤ 1

2β
p+i gives again |E|/|X| ≤ β/4 ≤ β − 1. �

Using this lemma we can prove the following relative error bound for Algorithm 1.



KAHAN’S ALGORITHM FOR 2 × 2 DETERMINANTS 2251

Proposition 3.2. |x̂− x| ≤ K|x| with K = (β + 1)u+ βu2.

Proof. If (C) holds then applying Lemma 3.1 to (2.6) gives the result. If (C) does
not hold then |x̂− x| ≤ u|x| by Property 2.1, and u ≤ K for β, p ≥ 2. �

One can check that (β + 1)u ≤ 3/4 and βu2 ≤ 1/8 for β, p ≥ 2. Hence the
relative error bound K satisfies K ≤ 7/8, from which it follows that

(3.2) x̂ and x have the same sign.

Recall from Section 2.2 that this conclusion could not have been obtained using the
classic relative error bound J in (2.5).

Furthermore, for all the formats of IEEE arithmetic u2 is much smaller than u,
so that K ≈ (β + 1)u. In particular, K ≈ 3u for radix 2.

Remark 3.3. This relative error bound K is not the best possible, and we will prove
in Section 4 a bound equal to 2u. However, it has been derived from Lemma 3.1,
whose upper bound β − 1 on |e|/|x| is asymptotically optimal for radix 2: for
example, if p ≥ 6 is even and if (a, b, c, d) = (N+3, N,N ′+3, N ′) with N = 3 ·2p−2

and N ′ = 7 · 2p−3 + 2p−3+1
3 then one can check that a, b, c, d ∈ F and that bc =

11·22p−4+5·2p−1 �∈ F, e = −2p−1 ∈ F, x = 2p−1+1 ∈ F, and f = x−e = 2p+1 �∈ F.
Thus, in this case, (C) holds and the ratio |e|/|x| is in 1−O(2−p) as p → ∞.

3.2. Bounding the absolute error by β ulps of x. We now turn to absolute
error bounds expressed in ulps of the exact result. Note first that using Propo-
sition 3.2 together with the fact that |t| ≤ β

2uulp(t) for any t leads immediately

to |x̂ − x| ≤ βK
2u ulp(x) ≈ β(β+1)

2 ulp(x). However, this bound can be improved to
β ulps of the exact result by using the error terms ε1 and ε2 introduced in (2.2).
To show this, we essentially bound |ε1| and |ε2| separately and then use the fact
that (2.3) implies |x̂ − x| ≤ |ε1| + |ε2|. Our bounds for |ε1| and |ε2| are given in
the lemma below; they will also be key ingredients for establishing the optimal or
asymptotically optimal error bounds of Section 4.

Lemma 3.4. |εi| ≤ β
2ulp(x) for i = 1, 2.

Proof. Assume first that Condition (C) holds. From x = f + e and Lemma 3.1 we
deduce that |f | ≤ |x| + |e| ≤ β|x|, which by definition of the ulp function implies

ulp(f) ≤ βulp(x). Hence, using (2.4), |ε1| ≤ β
2ulp(x). To show a similar bound on

|ε2|, first we combine (2.2) with x = f + e to obtain

(3.3) f̂ + e = x+ ε1.

Then, using the upper bound on |ε1| and since x is nonzero by Property 2.2, we get

ulp
(
f̂ + e

)
≤ β1−p|x|+ β

2β
1−pulp(x) < Lulp(x), L = β(1 + u).

For β, p ≥ 2 one can check that β < L ≤ β2, so that ulp
(
f̂ + e

)
< β2ulp(x).

Hence, ulps being integer powers of β, ulp
(
f̂ + e

)
≤ βulp(x) and we conclude that

|ε2| ≤ β
2ulp(x) using (2.4).

If (C) does not hold then one can check that (ε1, ε2) equals (RN(x) − x, 0) if
bc ∈ F, and (0,RN(x)− x) if f ∈ F. This implies |εi| ≤ 1

2ulp(x) for i = 1, 2 and the
conclusion follows. �

An immediate consequence of these bounds on |ε1| and |ε2| is the following result.
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Proposition 3.5. |x̂− x| ≤ βulp(x).

Another consequence of Lemma 3.4 is an alternative proof of Proposition 3.2:
using (3.3) we have |ε2| ≤ 1

2ulp(x+ ε1) ≤ u|x+ ε1| and then

|x̂− x| ≤ u|x|+ (1 + u)|ε1|.
Now, |ε1| ≤ β

2ulp(x) ≤ βu|x| by Lemma 3.4, so that |x̂ − x|/|x| is bounded by
u+ (1 + u)βu, which is precisely the constant K of Proposition 3.2.

Remark 3.6. We will see in Section 4 that the constant β in the bound of Propo-
sition 3.5 can be improved to (β + 1)/2. However, the bounds on |ε1| and |ε2| on
which this proposition relies are essentially the best possible: assuming rounding
“to nearest even”, β even, and p ≥ 5, Example 3.7 below provides inputs a, b, c, d
for which both |ε1| and |ε2| are asymptotically equivalent to β

2ulp(x) as p tends to
infinity. (In fact, as shown in Example 4.4 the bound on |ε1| is attainable assuming
rounding “to nearest even”, β ≥ 2, and p ≥ 4.)

Example 3.7 (Example for which the ratios |εi|/(β2ulp(x)), i = 1, 2 both tend to 1
as p → ∞, assuming rounding “to nearest even,” β even, and p ≥ 5). We consider
two cases, depending on the parity of p.
• When p is odd, let

a = βp−1 + βp−3 + β
2β

p−4,

b = βp−1 + β
2β

p−4 + β
p−5
2 ,

c = βp−1 + β
p−1
2 + 1,

d = c.

One can check that

ad = β2p−2 + β2p−4 + β
2β

2p−5 + β
3p−3

2 + β
3p−7

2 + β
2β

3p−9
2 + βp−1 + βp−3 + β

2β
p−4,

bc = β2p−2 + β
2β

2p−5 + β
3p−3

2 + β
3p−7

2 + β
2β

3p−9
2 + βp−1 + βp−3 + β

2β
p−4 + β

p−5
2 ,

so that x = β2p−4 − β
p−5
2 , and ulp(x) = βp−4. Since ulp(bc) = βp−1,

ŵ = β2p−2 + β
2β

2p−5 + β
3p−3

2 + β
3p−7

2 + β
2β

3p−9
2 + βp−1,

and e = −βp−3 − β
2β

p−4 − β
p−5
2 . Moreover, f = β2p−4 + βp−3 + β

2β
p−4, and since

ulp(f) = βp−3 rounding “to nearest even” gives f̂ = β2p−4+2βp−3 and ε1 = β
2β

p−4.

Then, f̂ + e = β2p−4 + βp−3 − β
2β

p−4 − β
p−5
2 , and since ulp(f̂ + e) = βp−3, one has

x̂ = RN(f̂ + e) = β2p−4 and ε2 = −β
2β

p−4 + β
p−5
2 . As a consequence,

|ε1| = β
2ulp(x) and |ε2| =

(
β
2 − β

−p+3
2

)
ulp(x).

• When p is even, consider

a = βp−1 + βp−2 + β
2β

p−6
2 ,

b = βp−1 + β
p
2 + β,

c = βp−1 + β
p
2−1 + β

2β
p−6
2 ,

d = b.

Then

ad = β2p−2 + β2p−3 + β
3p−2

2 + β
3p−4

2 + β
2β

3p−8
2 + βp + βp−1 + β

2β
p−3 + β

2β
p−4
2 ,

bc = β2p−2 + β
3p−2

2 + β
3p−4

2 + β
2β

3p−8
2 + βp + βp−1 + β

2β
p−3 + β

p
2 + β

2β
p−4
2 ,
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from which it follows that x = β2p−3−β
p
2 and ulp(x) = βp−3. Since ulp(bc) = βp−1,

ŵ = β2p−2 + β
3p−2

2 + β
3p−4

2 + β
2β

3p−8
2 + βp + βp−1,

so that e = −β
2β

p−3−β
p
2 − β

2β
p−4
2 . On the other hand, f = β2p−3+ β

2β
p−3+ β

2β
p−4
2 ,

and since ulp(f) = βp−2, one has f̂ = β2p−3 + βp−2 and ε1 = β
2β

p−3 − β
2β

p−4
2 .

Therefore, f̂+e = β2p−3+βp−2− β
2β

p−3−β
p
2 − β

2β
p−4
2 , and since ulp(f̂+e) = βp−2,

we deduce that x̂ = β2p−3 and ε2 = −β
2β

p−3 +
(
1 + 1

2β

)
β

p
2 . To summarize, in this

case one has

|ε1| =
(

β
2 − 1

2β
−p+4

2

)
ulp(x) and |ε2| =

(
β
2 −

(
1 + 1

2β

)
β

−p+6
2

)
ulp(x).

4. Optimal or asymptotically optimal error bounds

The results obtained in the previous section already show that Kahan’s algorithm
is always highly accurate: the absolute error is at most β ulps of the exact result
and the relative error is at most Ku ≈ (β + 1)u. In this section we shall improve
these bounds to (β + 1)/2 ulps and 2u, respectively, and show that these new
bounds are optimal or asymptotically optimal. First, we proceed by treating the
cases |ε2| ≤ 1

2ulp(x) and |ε2| > 1
2ulp(x) separately. In the first case (Section 4.1)

we show that the absolute error is bounded by |ε1|+ 1
2ulp(x) and that the relative

error is bounded by 2u. In the second case (Section 4.2) it turns out that smaller
bounds can be obtained: the absolute error is at most |ε1|, while the relative error
has the form u+O(u2). Then, combining these results with specific input examples,
we can prove Theorems 1.1 and 1.2, that is, conclude under mild assumptions on
β and p that (β + 1)/2 ulps is the best possible absolute error bound (Section 4.3)
and that 2u is an asymptotically optimal relative error bound (Section 4.4).

4.1. Absolute and relative error bounds when |ε2| ≤ 1
2ulp(x).

Lemma 4.1. If |ε2| ≤ 1
2ulp(x) then |x̂− x| ≤ |ε1|+ 1

2ulp(x) and |x̂− x| ≤ 2u|x|.

Proof. The absolute error bound follows from |x̂ − x| ≤ |ε1| + |ε2|, and it remains
to show that the relative error is bounded by 2u. If (C) does not hold or if |ε1| ≤
1
2ulp(x) then the result is clear, so assume that (C) holds and that 1

2ulp(x) < |ε1|.
First, by using Lemma 3.4 and the absolute error bound just shown, we obtain

(4.1) |x̂− x| ≤ β+1
2 ulp(x).

Since |ε1| ≤ 1
2ulp(f) by (2.4), we have ulp(x) ≤ β−1ulp(f); on the other hand, using

x = f+e and Lemma 3.1 we obtain |f | ≤ |x|+|e| ≤ β|x| and thus ulp(f) ≤ βulp(x).
Therefore,

ulp(x) = β−1ulp(f).

Recalling from Property 2.2 that (C) implies x �= 0, we deduce that

|x| < βpulp(x) ≤ |x|+ |e|.

By Property 2.3 and since x �= 0 implies ulp(x) > 0, we have

0 < βp − |x|
ulp(x)

≤ η, η =
|E|

ulp(X)
.
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This gives an upper bound on ulp(x)/|x| which, combined with (4.1), leads to

|x̂− x| ≤ K ′|x| with K ′ = β+1
2(βp−η) ; one may check that K ′ ≤ 2u as soon as

(4.2) η ≤ 1
2 (β − 1)βp−1.

On the other hand, since f �∈ F by (C), we have |F | > βp and thus ulp(F ) ≥ β.
Now, ulp(f) = βulp(x) is equivalent to ulp(F ) = βulp(X), and we obtain

ulp(X) ≥ 1 and |X| < |F |.
� Assume σ ≥ 0. In this case |E| ≤ 1

2β
p. If ulp(X) ≥ β then η ≤ 1

2β
p−1 and, since

β ≥ 2, (4.2) follows. If ulp(X) = 1 then (4.1) leads to

|X̂ −X|
|X| =

|x̂− x|
|x| ≤ β+1

2 · ulp(x)|x| = β+1
2 · 1

|X| .

Hence |X̂ − X| ≤ β
2 + 1

2 and since X, X̂ ∈ Z and β is even, |X̂ − X| ≤ β
2 . Thus

|x̂− x|/|x| ≤ β
2 /|X| and, using |X| ≥ |F | − |E| > 1

2β
p, we get |x̂− x| < 2u|x|.

� Assume σ = −1. If |BC| ≤ β2p−1 then |E| ≤ 1
2β

p and we can conclude exactly

as for the case “σ ≥ 0” detailed above. Let us now assume |BC| > β2p−1. Then
|E| ≤ 1

2β
p+1. If ulp(X) ≥ β2 then η ≤ 1

2β
p−1 and (4.2) follows, and we are left

with the case where ulp(X) ≤ β. Since RN(|BC|) is either equal to β2p−1 or at
least β2p−1 + βp, we consider these two subcases separately:

• If RN(|BC|) ≥ β2p−1 + βp then, using |F | ≥ βRN(|BC|)− |AD|, we get

|F | ≥ β(β2p−1 + βp)− (βp − 1)2 > βp+1 + 1
2β

p.

From |X| ≥ |F |−|E|, we deduce that |X| > 1
2 (β+1)βp. Since ulp(x)/|x| =

ulp(X)/|X|, it follows from (4.1) and ulp(X) ≤ β that |x̂− x| < 2u|x| .
• Let us now show that RN(|BC|) = β2p−1 is not possible (when |BC| >
β2p−1). If BC > 0 then E < 0 and, since X = F + E and |X| < |F |, we
must have F > 0. By definition of F this implies AD > RN(BC)β = β2p;
similarly, if BC < 0 then E > 0, F < 0, and AD < RN(BC)β = −β2p; in
both cases we have |AD| > β2p, which is impossible for |A|, |D| < βp.

� Assume σ ≤ −2. Let i = −σ, so that i ≥ 2 and |E| ≤ 1
2β

p+i. First taking i = 2,

we deduce from |X| ≥ β2|BC|−|AD| that |X| > β2(βp−1+1)2−β2p = 2βp+1+β2.
This implies ulp(X) ≥ β2. This lower bound is enough to get (4.2) when |BC| ≤
β2p−1, since then |E| ≤ 1

2β
p+1; when |BC| > β2p−1 we have |E| ≤ 1

2β
p+2 but

|X| can now be lower bounded by β2p, so that ulp(X) ≥ βp+1 and η ≤ 1
2β, from

which (4.2) follows. Let us now take i ≥ 3. Reusing (3.1) gives |X| ≥ βp+iy and
one can check that y ≥ 1 for β, p ≥ 2. Hence ulp(X) ≥ βi+1 and, recalling that
|E| ≤ 1

2β
p+i, we obtain η ≤ 1

2β
p−1 and then (4.2). �

4.2. Absolute and relative error bounds when |ε2| > 1
2ulp(x).

Lemma 4.2. If |ε2| > 1
2ulp(x) then |x̂ − x| ≤ |ε1| and |x̂ − x| ≤ L|x| with L =

|ε1|
βpulp(x)−|ε1| ≤

u
1−u .

Proof. Note first that the assumption on ε2 implies x must be nonzero. To see this,

recall that the ulp function is nonnegative, and that x = 0 implies f = −e = f̂ and
thus |ε2| = 0 ≤ 1

2ulp(x).

Using (2.4) leads to ulp(x) ≤ β−1ulp
(
f̂ + e

)
and, as x is nonzero, we obtain

(4.3) |x| < βpulp(x) ≤ βp−1ulp
(
f̂ + e

)
≤ |f̂ + e|.
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Since x̂ = RN(f̂ + e), we deduce from (4.3) that βpulp(x) ≤ |x̂|. On the other
hand, |x̂| ≤ |x|+ |x̂− x| < (βp + β)ulp(x) by Proposition 3.5. Noting further that
ulp

(
βpulp(x)

)
= βulp(x) and that x̂ ∈ F leads to

(4.4) |x̂| = βpulp(x).

In other words, |ε2| is larger than 1
2ulp(x) only when x̂ is a power of β. Since

f̂ + e = x + ε1 it also follows from (4.3) that |x| < βpulp(x) ≤ |x| + |ε1| and,
using (4.4), we deduce that

βpulp(x)− |ε1| ≤ |x| < |x̂| = βpulp(x).

From (3.2) and |x| < |x̂| we obtain |x̂− x| = |x̂| − |x| and, consequently,
(4.5) |x̂− x| = βpulp(x)− |x| ≤ |ε1|.
This implies in particular |x| ≥ βpulp(x) − |ε1|. Using Lemma 3.4, one can check
that this lower bound on |x| �= 0 is positive for any β, p ≥ 2. Hence |x̂− x|/|x| ≤ L

with L = |ε1|/(βpulp(x)− |ε1|), and it follows from |ε1| ≤ β
2ulp(x) that L is upper

bounded by β/2
βp−β/2 = u

1−u . �

Remark 4.3. In fact, we have the following implication:

(4.6) |ε1| ≤ 1
2ulp(x) ⇒ |ε2| ≤ 1

2ulp(x).

To see this, recall from (4.3) in the proof of Lemma 4.2 that if |ε2| is larger than
1
2ulp(x) then |x| < y ≤ |f̂ + e| for some y in F. Since x̂ = RN(f̂ + e), we have

sign(x̂) = sign(f̂ + e) and |x̂| = RN(|f̂ + e|). Hence, recalling from (3.3) that

f̂ + e = x+ ε1,

|ε2| =
∣∣|x̂| − |f̂ + e|

∣∣ ≤ |f̂ + e| − y < |f̂ + e| − |x| ≤ |ε1|,
from which it follows that |ε1| must be larger than 1

2ulp(x) too.

4.3. Proof of Theorem 1.1. Let us first check that the absolute error is indeed
always bounded as

(4.7) |x̂− x| ≤ β+1
2 ulp(x).

By Lemma 4.1 and Lemma 4.2 we have |x̂ − x| ≤ |ε1| + 1
2ulp(x), and Lemma 3.4

ensures further that |ε1| ≤ β
2ulp(x), thus leading to (4.7).

Assuming rounding “to nearest even”, β/2 odd, and p ≥ 4 we provide in Exam-
ple 4.4 below an input (a, b, c, d) for which the absolute error |x̂− x| is equal to its
bound in (4.7). This concludes the proof of Theorem 1.1. �

Example 4.4 (Example for which the absolute error bound in (4.7) is achieved,
assuming rounding “to nearest even”, β/2 odd, and p ≥ 4). Consider

a = βp−1 + βp−3,

b = βp−1 + β
2 ,

c = βp−1 + βp−3 + βp−4,

d = βp−1 + βp−2 + β
2 .

One can check that a, b, c, d ∈ F and that

bc = β2p−2 + β2p−4 + β2p−5 + β
2β

p−1 + β
2β

p−3 + β
2β

p−4.
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This gives ulp(bc) = βp−1 and, recalling that ŵ = RN(bc) and e = ŵ−bc, we obtain

ŵ = β2p−2 + β2p−4 + β2p−5 + β
2β

p−1

and

e = −β
2β

p−3 − β
2β

p−4.

Now, f = ad − ŵ yields f = β2p−3 + β
2β

p−3, so that ulp(f) = βp−2 and f̂ =

RN(f) = β2p−3. Hence

f̂ + e = β2p−3 − β
2β

p−3 − β
2β

p−4,

which gives

x̂ = RN(f̂ + e) =

⎧⎪⎨
⎪⎩

β2p−3 − β
2β

p−3 if β
2 is even,

β2p−3 −
(
β
2 + 1

)
βp−3 if β

2 is odd.

On the other hand, x = ad− bc leads to x = β2p−3− β
2β

p−4, from which we deduce

ulp(x) = βp−3 and

|x̂− x| =

⎧⎪⎨
⎪⎩

β−1
2 ulp(x) if β

2 is even,

β+1
2 ulp(x) if β

2 is odd.

Thus, the absolute error bound in (4.7) is attained in this case when β/2 is odd.

In addition, ε1 = f̂ − f = −β
2ulp(x), which means that for rounding “to nearest

even”, β ≥ 2, and p ≥ 4 the bound β
2ulp(x) given in Lemma 3.4 for |ε1| is attained.

Remark 4.5. When β/2 is even—a case which seems unlikely in practice—we believe

that the bound β+1
2 ulp(x) is attainable as well; although we have so far not been

able to define generic worst cases, our exhaustive simulations for small values of β
and p have found inputs leading to this bound. The simplest example is β = 4,
p = 4, a = 81 = 11014, b = 70 = 10124, c = 69 = 10114, and d = 72 = 10204.

4.4. Proof of Theorem 1.2. Since for β, p ≥ 2 we have u/(1−u) ≤ 2u, Lemma 4.1
and Lemma 4.2 imply that the relative error is always bounded as

(4.8) |x̂− x| ≤ 2u|x|.
Furthermore, assuming rounding “to nearest even” and β even, we provide in Ex-
ample 4.6 below an input (a, b, c, d) such that |x̂−x|/2u|x| has the form 1−O(β−p),
thus showing the asymptotic optimality of the relative error bound in (4.8). �

Example 4.6 (Example for which the relative error is asymptotically equivalent to
the bound 2u in (4.8), assuming rounding “to nearest even” and β even). Consider

a = b = βp−1 + 1, c = βp−1 + β
2β

p−2, d = 2βp−1 + β
2β

p−2.

Since β is even, these four numbers are in F. Furthermore, one can check that

bc = β2p−2 + β
2β

2p−3 + βp−1 + β
2β

p−2,

from which it follows that the representation of bc in radix β is

p digits︷ ︸︸ ︷
1β
2 000 . . . 01

p−1 digits︷ ︸︸ ︷
β
2 000 . . . 00 .
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Consequently, rounding bc “to nearest even” gives

ŵ = β2p−2 + β
2β

2p−3 + 2βp−1,

and we obtain e = ŵ−bc = β
2β

p−2 and f = ad− ŵ = β2p−2+ β
2β

p−2. In particular,
the representation of f in radix β is

p digits︷ ︸︸ ︷
10000 . . . 00

p−1 digits︷ ︸︸ ︷
β
2 000 . . . 00,

so that rounding “to nearest even” simply truncates f into f̂ = β2p−2. Thus,

f̂ + e = (βp + β
2 )β

p−2 and we deduce that

x̂ = RN(f̂ + e) = β2p−2.

On the other hand, since a and b are equal,

x = a(d− c) = (βp−1 + 1)βp−1.

Therefore, the relative error is given by |x̂− x|/|x| = 1
βp−1+1 = 1

1+β1−p · 2u, and we

conclude, for β fixed and when p → ∞, that the ratio |x̂−x|/2u|x| is in 1−O(β−p).

5. Behavior of the worst case relative error with respect to σ

When ad and bc are of similar magnitude the relative error in the computed ad−
bc can be close to the bound 2u of Theorem 1.2, as already shown in Example 4.6.
However, when one of the products |ad| or |bc| is sufficiently larger than the other,
we can expect Algorithm 1 to be almost as accurate as if only one rounding were
performed, that is, we can expect relative error bounds of the form u+O(u2).

In this section, we show that this is indeed the case: assuming that a, b, c, d,
and x are nonzero, we investigate how the worst case relative error varies with the
parameter σ = ea + ed − eb − ec introduced in (2.8b). This integer is a convenient
indicator of whether the ratio |ad|/|bc| is huge or tiny, and it turns out that Kahan’s
algorithm behaves as predicted as soon as |σ| is large enough. Before providing
precise statements and proofs, let us first illustrate this behavior with a numerical
experiment in radix 2.

For small values of the precision p and fixed values of the parameter σ, one can
perform exhaustive tests and compute the worst case relative error generated by
Kahan’s algorithm. Figure 1 plots the worst case relative error |x̂ − x|/|x| versus
σ, for σ ∈ {−24, . . . , 13} and (β, p) = (2, 11), which corresponds to the binary16
interchange format [8]. We used an exhaustive search program for maximizing

|X̂ −X|/|X| for each value of σ considered, distinguishing between two cases: either
ad and bc have the same sign (abcd > 0), or ad and bc have opposite signs (abcd < 0).
The corresponding worst cases are listed explicitly in Table 1.

This numerical experiment illustrates the typical behavior, with respect to σ, of
the worst case relative error generated by Kahan’s algorithm:

• When σ �∈ {−p − 2, . . . , 2}, the relative error bound 2u is not optimal.
Sharper relative error bounds are derived when σ ≤ −p − 3 in Subsec-
tion 5.1, and when σ ≥ 3 in Subsection 5.2. These relative error bounds
are plotted in Figure 1, and their ratio to the unit roundoff is reported in
the last column of Table 1. In particular, they show that the relative error
is bounded by (1 + ε)u for some positive ε such that ε → 0 as |σ| → ∞.
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Figure 1. Worst case relative error for Algorithm 1, β = 2, p = 11.

• When σ ∈ {−p− 2, . . . , 2}, Figure 1 suggests that the relative error bound
2u is essentially the best possible. In fact, we show in Subsection 5.3 that
at least in radix 2, there is a set of input values {Aσ, Bσ, Cσ, Dσ}−p−2≤σ≤2

whose associated relative errors tend to the plateau as p → ∞.

The shape of the plots in Figure 1 reflects well the lack of symmetry between ad
and bc in Kahan’s algorithm. Thus, if σ is known to be negative then it may be
useful to exchange the role of ad and bc, that is, to call Kahan’s algorithm with
(b, a, d, c) and return the opposite of x̂.

5.1. Sharper relative error bound when σ ≤ −p− 3.

Proposition 5.1. If σ ≤ −p − 3 then we have |x̂ − x| ≤ (1 + ε)u|x|, where ε :=

2βp−1
/(

β2p−2−σ

(βp−1)2 − 1
)
satisfies 0 < ε < 2β−2. Furthermore, ε → 0 as σ → −∞.

For β, p ≥ 2, one can check that 1 + ε ≤ 1/(1 − u) iff σ ≤ ζ(β, p), where
ζ(β, p) = −

⌈
logβ

(
(4 − (2 − β1−p)β1−p) · (βp − 1)2

)⌉
. In particular, ζ(β, p) equals

−2p− 2 if β = 2 < p, and −2p− 1 if β = 10 or β = p = 2.
For the proof of Proposition 5.1, we first state the following two lemmas.

Lemma 5.2. Let y ∈ F and δ, ε ∈ R be such that RN(y + δ) = y + δ + ε. If β ≥ 2
and |δ| < β−1ulp(y) then |ε| ≤ |δ|.

Proof. Note first that, by assumption, y �= 0 and |δ| < 1
2ulp(y). Therefore, if

|y| �= βp−1ulp(y) or if yδ ≥ 0 we have RN(y + δ) = y and thus ε = −δ. The
rest of the proof deals with the case where |y| = βp−1ulp(y) and yδ < 0. Let
γ = β−1ulp(y). When |δ| ≤ γ

2 we have, as before, RN(y + δ) = y. When γ
2 <

|δ| < γ, we can check that RN(y + δ) = y + sign(δ)γ, from which it follows that
sign(δ)ε = γ − |δ| ∈ (0, γ2 ] and thus |ε| ≤ γ

2 ≤ |δ|. �

Lemma 5.3. For σ ≤ −p− 3 and assuming (C), we have |ε1| ≤ |ad| < 1
2ulp(x).

Proof. We have ad/bc = ADβσ/BC. Using βp−1 ≤ |A|, |B|, |C|, |D| < βp leads
to |ad| < βσ+2|bc|. Since ŵ = RN(bc) implies ulp(bc) ≤ ulp(ŵ), we arrive at
|ad| < βp+σ+2ulp(ŵ). For β ≥ 2 and σ ≤ −p− 3, this gives |ad| < β−1ulp(ŵ) and
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Table 1. Worst cases for Algorithm 1, β = 2, p = 11. The ratios
|x̂−x|
u|x| and bound

u have been rounded upward to four decimal places.

σ A B C D
|x̂−x|
u|x| A B C D

|x̂−x|
u|x|

bound
u

-24 1024 1536 1366 1024 0.9995 2047 −1536 1366 2047 0.9998 1.0005

-23 1024 1536 1366 1024 0.9994 2047 −1536 1366 2047 1.0000 1.0010

-22 2047 1792 1172 2047 0.9995 2047 −1536 1366 2047 1.0005 1.0020

-21 2047 1792 1172 2047 1.0005 2047 −1536 1366 2047 1.0015 1.0040

-20 2047 1792 1172 2047 1.0025 2047 −1536 1366 2047 1.0035 1.0079

-19 2047 1792 1172 2047 1.0064 2047 −1536 1366 2047 1.0074 1.0157

-18 2047 1792 1172 2047 1.0142 2047 −1536 1366 2047 1.0152 1.0313

-17 2047 1792 1172 2047 1.0298 2047 −1536 1366 2047 1.0308 1.0625

-16 2047 1051 1043 2047 1.0743 2047 −1056 1040 2047 1.0740 1.1249

-15 2047 1051 1043 2047 1.1938 2047 −1056 1040 2047 1.1932 1.2498

-14 2047 1051 1043 2047 1.4329 2047 −1056 1040 2047 1.4314 1.4997

-13 2047 1051 1043 2047 1.9113 2047 −1056 1040 2047 1.9078 2.0000

-12 2047 1792 1172 2047 1.9971 2047 −1536 1366 2047 1.9971 2.0000

-11 1550 1792 1172 1353 1.9981 1550 −1536 1366 1353 1.9981 2.0000

-10 1024 1792 1172 1024 1.9981 1024 −1536 1366 1024 1.9981 2.0000

-9 2031 1496 1408 1807 1.9981 1314 −2047 1025 1197 1.9952 2.0000

-8 1792 1496 1408 1024 1.9981 1280 −1536 1366 1024 1.9942 2.0000

-7 1915 1827 1163 1848 1.9989 1152 −1536 1366 1024 1.9903 2.0000

-6 1897 1831 1175 1831 1.9991 1088 −1536 1366 1024 1.9826 2.0000

-5 1551 1815 1191 1331 1.9990 1056 −1536 1366 1024 1.9674 2.0000

-4 1963 1575 1431 1277 1.9990 1040 −1536 1366 1024 1.9376 2.0000

-3 1405 1581 1445 1067 1.9990 1032 −1536 1366 1024 1.8807 2.0000

-2 1777 1681 1649 1519 1.9988 1028 −1536 1366 1024 1.7763 2.0000

-1 1113 1969 1361 1047 1.9986 1026 −1536 1366 1024 1.5988 2.0000

0 1027 1025 1025 1025 1.9981 1605 −1536 1514 1165 1.4992 2.0000

1 1088 1152 1076 1052 1.9981 1025 −1536 1366 1024 1.4990 2.0000

2 1040 1536 1450 1040 1.9981 1526 −1472 1456 1024 1.2493 2.0000

3 1024 2023 2007 1024 1.4531 1408 −1472 1456 1300 1.1244 1.5000

4 1153 1536 1370 1024 1.1244 1472 −1496 1408 1336 1.0620 1.1667

5 1072 1536 1370 1040 1.0620 1868 −1496 1408 1088 1.0308 1.0715

6 1057 1512 1408 1024 1.0308 1844 −1496 1408 1120 1.0152 1.0334

7 1043 1578 1536 1024 1.0152 1512 −1504 1504 1376 1.0074 1.0162

8 1033 1536 1450 1024 1.0074 1588 −1472 1456 1316 1.0035 1.0080

9 1029 1568 1504 1024 1.0035 1513 −1472 1456 1384 1.0015 1.0040

10 1027 1706 1536 1024 1.0015 1508 −1496 1408 1390 1.0005 1.0020

11 1026 2003 1570 1024 1.0005 1940 −1536 1382 1081 1.0000 1.0010

12 1025 1456 1440 1024 0.9998 1024 −1536 1366 1024 1.0000 1.0005

13 1483 1536 1434 1415 0.9996 1554 −1504 1504 1350 0.9996 1.0003

the inequality |ε1| ≤ |ad| follows from Lemma 5.2. Moreover, σ ≤ −p − 3 implies

|ad|/|x| ≤ 1/( β3p+1

(βp−1)2 − 1) and thus, as β ≥ 2, |ad| ≤ 1
2β

−p|x| < 1
2ulp(x). �

Proof of Proposition 5.1. Assume (C), for otherwise the result holds trivially. Us-
ing Lemma 5.3 and (4.6) gives |ε1| ≤ |ad| and |ε2| ≤ 1

2ulp(x), so that |x̂ − x| ≤
(u+ψ)|x| with ψ := |ad|/|x|. Now, ψ−1 = |1− bc/ad| ≥ |bc/ad| − 1 = |BC|/|AD| ·
β−σ − 1 ≥ β2p−2−σ/(βp − 1)2 − 1. Since σ ≤ −2, this lower bound is positive.
Hence ψ ≤ εu and thus |x̂−x| ≤ (1+ ε)u|x|. For fixed β, p ≥ 2, we have ε = O(βσ)
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as σ → −∞ and the limit follows; also, ε is a nondecreasing function of σ and one
may check that ε < 2β−2 for σ = −p− 3. �
5.2. Sharper relative error bound when σ ≥ 3.

Proposition 5.4. If σ ≥ 3 then |x̂− x| < (1+ ε)u|x|, where ε := β−1

β−2+σ−1 satisfies

0 < ε ≤ 1
(β−1)β . Furthermore, ε → 0 as σ → +∞.

For β, p ≥ 2, 1 + ε ≤ 1/(1 − u) iff σ ≤ ζ(β, p) := �logβ(2βp + (β − 1)β)�; In
particular, we have ζ(2, p) = p+ 2 and ζ(10, p) = p+ 1.

For the proof of Proposition 5.4 we use the following two lemmas.

Lemma 5.5. If |e| ≤ 1
2ulp(x) then |ε1| ≤ 1

2ulp(x).

Proof. If x = 0 then by assumption e = 0, so that f , f̂ , ε1 are zero and the result is
true. Now assume x �= 0. By (2.4) the only nontrivial case is when ulp(x) < ulp(f).
In this case, x �= 0 leads to |x| < βpulp(x) ≤ βp−1ulp(f) ≤ |f |, so that |x| < y ≤ |f |
for some y in F. Since f̂ = RN(f), we have sign(f̂) = sign(f) and |f̂ | = RN(|f |).
Hence |ε1| =

∣∣RN(|f |)− |f |
∣∣ ≤ |f | − y < |f | − |x| ≤ |e| ≤ 1

2ulp(x). �

Lemma 5.6. For σ ≥ 3 and assuming (C), we have |ε2| ≤ |e| < 1
βulp(x).

Proof. Since σ ≥ 0, we deduce from (2.9) and (2.10) that |E| ≤ 1
2ulp(BC) ≤ 1

2β
p

and that both |F | and |X| are lower bounded by β2p−2+σ − β2p. Hence, for β ≥ 2
and σ ≥ 3, the ratios |e|/|f | = |E|/|F | and |e|/|x| = |E|/|X| are upper bounded by
β−p

2(β−1) ≤ β−p−1. This implies first that |e| ≤ β−p−1|f | < β−1ulp(f) ≤ β−1ulp(f̂)

and, since RN(f̂ + e) = f̂ + e+ ε2, Lemma 5.2 gives |ε2| ≤ |e|. On the other hand,
|e| ≤ β−p−1|x| < β−1ulp(x) and the conclusion follows. �
Proof of Proposition 5.4. Assume (C), for otherwise the result holds trivially. Since
β ≥ 2 and σ ≥ 3, we deduce from Lemma 5.5 and Lemma 5.6 that |ε1| ≤ 1

2ulp(x)
and |ε2| ≤ |e|. Hence, recalling that (C) implies x is nonzero, |x̂− x| ≤ (u+ ψ)|x|
with ψ = |e|/|x| = |E|/|X|. Now, since σ ≥ 0 we have |E| ≤ 1

2β
p and |X| ≥

|AD|βσ − |BC| > β2p(β−2+σ − 1), so that ψ < εu with ε as above. For any given
β ≥ 2, we have ε ≤ 1

β2−β when σ ≥ 3, and ε = O(β−σ) as σ → +∞, which

concludes the proof. �
5.3. Sharpness of the bound 2u for −p− 2 ≤ σ ≤ 2 in radix 2. To prove that
in radix 2 the relative error bound 2u is essentially the best possible over the range
−p−2 ≤ σ ≤ 2, Table 2 gives parametrized bad cases for which |x̂−x|/|x| ∼ 2−p+1

as p → +∞. These examples have been first determined experimentally (by only
focusing on input numbers of the form 2p−1, or 2p−1 + 2i with p − 2 ≤ i ≤ 0, or
2p − 1, or 2p − 1− 2i with p − 2 ≤ i ≤ 0), to give a hint about the “bit patterns”
that would lead to such cases. These guessed bit patterns have then been proven
to actually correspond to cases for which the relative error tends to 2u as p → ∞.

6. Concluding remarks: Special cases

Let us conclude with some remarks about the behavior of Kahan’s algorithm in
two special cases. We first consider the case where ad and bc have opposite signs,
which covers in particular sums of squares a2+ b2. We then consider the evaluation
of y2 − zt, an expression that occurs for instance when computing the discriminant
of a quadratic equation.
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Table 2. Parametrized examples for −p−2 ≤ σ ≤ 2 for which the
relative error produced by Algorithm 1 is asymptotically equivalent
to the bound 21−p = 2u as p tends to infinity.

σ A B C D

−p− 2 2p − 1 −
(
2p−1 + 2�

p−1
2

�) 2p−1 + 2�
p−2
2

� 2p − 1

−p− 1 2p − 1 −(2p − 1) 2p−1 + 1 2p − 1

−p 2p − 2 −(2p − 1) 2p−1 + 1 2p−1 + 1

−p+ 1 2p−1 −(2p − 1) 2p−1 + 1 2p−1

−p+ 2 2p − 2p−2 − 1 −(2p − 1) 2p−1 + 1 2p−1

(−p+ 2,−p/2] 2p−1 + 2−σ −(2p − 1) 2p−1 + 1 2p−1

(−p/2,−2] 2p−1 + 2−σ 2p−1 + 2p+σ−1 2p−1 + 2−σ−1 2p−1 + 2−σ−1

−1 2p − 2 2p−1 + 1 2p−1 + 1 2p−1 + 1

0 2p − 5 2p − 3 2p−1 + 1 2p−1 + 1

1 2p−1 + 2p−3 2p−1 + 2p−2 2p−1 + 1 2p−1 + 1

2 2p−1 + 2p−3 2p − 2 2p−1 + 2p−2 − 1 2p−1 + 1

6.1. Case where ad and bc have opposite signs. In this special case a signifi-
cantly smaller error bound in ulps can be derived, whereas, at least in radix 2, the
error bound given by Theorem 1.2 remains asymptotically optimal.

Proposition 6.1. If ad and bc have opposite signs then |x̂− x| ≤ ulp(x).

Proof. From Lemmas 4.1 and 4.2, |x̂ − x| ≤ |ε1| + 1
2ulp(x) and it suffices to check

that |ε1| ≤ 1
2ulp(x). If ad and bc are of opposite signs then |bc| ≤ |ad − bc| = |x|

and thus ulp(bc) ≤ ulp(x). Hence |e| ≤ 1
2ulp(bc) ≤

1
2ulp(x), which by Lemma 5.5

implies |ε1| ≤ 1
2ulp(x), as wanted. �

The example below shows that in radix 2 and under the constraint sign(ad) �=
sign(bc), both the improved absolute error bound of Proposition 6.1 and the relative
error bound of Theorem 1.2 are asymptotically optimal.

Example 6.2. Consider

a = 2p − 2, b = −(2p − 1)2p, c = d = 2p−1 + 1.

Then bc < 0 < ad and one may check that |x̂ − x| = (1 − 2−p − 21−2p)ulp(x).
Moreover, the relative error satisfies

|x̂− x|
|x| =

23p−1 − 22p−1 − 2p

23p−1 + 22p − 2p − 2
· 2u.

Hence, both |x̂− x|/ulp(x) and |x̂− x|/(2u|x|) are in 1−O(2−p) as p → ∞.

A particularly important occurrence of the case “sign(ad) �= sign(bc)” is the
evaluation of sums of squares, that is, expressions of the form x = a2 + b2 obtained
by setting d to a and c to −b. For radix 2, the next three examples illustrate the
sharpness of the bounds in Proposition 6.1 and Theorem 1.2 when evaluating sums
of squares with Kahan’s algorithm.
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Example 6.3 shows that the absolute error bound in Proposition 6.1 is asymptot-
ically optimal if p is even, and optimal if p is odd. Example 6.4 shows that, at least
when p is even, the relative error bound 2u of Theorem 1.2 remains essentially the
best possible. When p is odd, we did not manage to build such a generic example.
However, Example 6.5 shows that a relative error close to 2u is attainable for the
binary64 (p = 53) and binary128 (p = 113) arithmetics [8].

Example 6.3. If p ≥ 6 is even, consider

a = d = 5 · 2p−3 + 2 and b = −c = 3 · 2p−2 + 1,

and, if p ≥ 7 is odd, let

a = d = 2p−1 + 2
p−1
2 and b = −c = 3 · 2p−2 + 2

p−1
2 .

Then the associated absolute errors are, respectively, (1−5 ·2−p) ulp(x) and ulp(x).

Example 6.4. If p is even, let

a = d = 2p−1 and b = −c = (2p−1 + 2
p
2−1 + 1) 2p/2.

Then
|x̂− x|
|x| =

2p−1 − 2
p
2 − 1

2p−1 + 2
p
2 + 3 + 21−

p
2 + 21−p

· 2u

and we deduce that |x̂− x|/(2u|x|) is in 1− O(2−p/2) as p tends to infinity.

Example 6.5. When p = 53, which corresponds to the binary64 format, taking

a = d = 8426657115275263 and b = −c = 302232031373205690122240,

gives |x̂− x|/(2u|x|) = 0.999000553067209 . . ..
In the binary128 floating-point format, p = 113 and taking

a = d = 9715274200149150133070733366001663,
b = −c = 374144419157391711793995097622609485288981460418560,

gives |x̂− x|/(2u|x|) = 0.999008178703665 . . ..

6.2. Computation of discriminants. Now assume we want to evaluate y2 − zt
from y, z, t ∈ F, for instance, for getting the discriminant of a quadratic equation.
Denoting the output of Algorithm 1 by Kdet(a, b, c, d), the value y2−zt can clearly
be approximated in two different ways, as Kdet(y, z, t, y) or −Kdet(z, y, y, t).
However, unlike arbitrary determinants and sums of squares, the expression y2−zt
lacks symmetry (one square and one product instead of two products or two squares)
and it is natural to ask whether the bounds in Theorems 1.1 and 1.2 can be im-
proved if we restrict to one of those two evaluation choices.

The answer is “no” at least in radix 2: as we shall see in the two examples below,
for both ways of computing the discriminant the relative error bound 2u remains
asymptotically optimal and the absolute error bound 3

2ulp(x) remains optimal.

Example 6.6. Let x̂ = Kdet(y, z, t, y) with

y = z = 2p−1 + 3 and t = 2p−1 + 1.

One can check that |x̂− x|/|x| is equal to 2u/(1 + 6 · 2−p). Now, if we use instead,
x̂ = −Kdet(z, y, y, t), then it can be checked that the inputs

y = z = 2p−1 + 1 and t = 2p−1 + 3
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lead to the relative error |x̂−x|/|x| = 2u/(1+21−p). Thus, for both ways of getting
y2 − zt the relative error can have the form 1−O(2−p) as p tends to infinity.

Example 6.7. Assume p ≥ 7 and consider x̂ = Kdet(y, z, t, y) for y, z, t such that

y = 3 · 2p−2 − 2, z = 2p − 1, t = 9 · 2p−4 − 6.

It can be checked that x = y2−zt = 57 ·2p−4−2, ulp(x) = 4, and x̂ = 57 ·2p−4−8,
from which we deduce |x̂− x| = 3

2ulp(x). When x̂ = −Kdet(z, y, y, t), considering

y = 5 · 2p−3 − 1, z = 5 · 2p−3 − 2, t = 5 · 2p−3 − 3

with p ≥ 6 leads to x = y2 − zt = 15 · 2p−3 − 5, ulp(x) = 2, and x̂ = 15 · 2p−3 − 8,
which also gives an absolute error equal to 3

2ulp(x).
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