Remote Access Mathematics of Computation
Green Open Access

Mathematics of Computation

ISSN 1088-6842(online) ISSN 0025-5718(print)



An Extension of the Floater-Hormann Family of Barycentric Rational Interpolants

Author: Georges Klein
Journal: Math. Comp. 82 (2013), 2273-2292
MSC (2010): Primary 65D05, 41A05, 41A20, 41A25; Secondary 65L12, 65D32
Published electronically: March 25, 2013
MathSciNet review: 3073200
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: The barycentric rational interpolants introduced by Floater and Hormann in $ 2007$ are ``blends'' of polynomial interpolants of fixed degree $ d$. In some cases these rational functions achieve approximation of much higher quality than the classical polynomial interpolants, which, e.g., are ill-conditioned and lead to Runge's phenomenon if the interpolation nodes are equispaced. For such nodes, however, the condition of Floater-Hormann interpolation deteriorates exponentially with increasing $ d$. In this paper, an extension of the Floater-Hormann family with improved condition at equispaced nodes is presented and investigated. The efficiency of its applications such as the approximation of derivatives, integrals and antiderivatives of functions is compared to the corresponding results recently obtained with the original family of rational interpolants.

References [Enhancements On Off] (What's this?)

  • 1. B. K. Alpert, High-order quadratures for integral operators with singular kernels, J. Comput. Math. Appl. 60 (1995), 367-378. MR 1357317 (96h:65037)
  • 2. R. Baltensperger and J.-P. Berrut, The errors in calculating the pseudospectral differentiation matrices for Čebyšev-Gauss-Lobatto points, Comput. Math. Appl. 37 (1999), 41-48, Corrigenda in Comput. Math. Appl. 38 (1999), 119. MR 1664260 (99h:65173)
  • 3. R. Baltensperger, J.-P. Berrut, and B. Noël, Exponential convergence of a linear rational interpolant between transformed Chebyshev points, Math. Comp. 68 (1999), 1109-1120. MR 1642809 (99k:41016)
  • 4. J.-P. Berrut, Rational functions for guaranteed and experimentally well-conditioned global interpolation, Comput. Math. Appl. 15 (1988), 1-16. MR 937561 (89b:65029)
  • 5. J.-P. Berrut and R. Baltensperger, The linear rational pseudospectral method for boundary value problems, BIT 41 (2001), 868-879. MR 2058847 (2005d:65124)
  • 6. J.-P. Berrut, M. S. Floater, and G. Klein, Convergence rates of derivatives of a family of barycentric rational interpolants, Appl. Numer. Math. 61 (2011), 989-1000. MR 2806141
  • 7. J.-P. Berrut and H. D. Mittelmann, Lebesgue constant minimizing linear rational interpolation of continuous functions over the interval, Comput. Math. Appl. 33 (1997), 77-86. MR 1449215 (98c:41015)
  • 8. J.-P. Berrut and L. N. Trefethen, Barycentric Lagrange interpolation, SIAM Rev. 46 (2004), 501-517. MR 2115059 (2005k:65018)
  • 9. L. Bos, S. De Marchi, and K. Hormann, On the Lebesgue constant of Berrut's rational interpolant at equidistant nodes, J. Comput. Appl. Math. 236 (2011), 504-510. MR 2843034
  • 10. L. Bos, S. De Marchi, K. Hormann, and G. Klein, On the Lebesgue constant of barycentric rational interpolation at equidistant nodes, Numer. Math. 121 (2012), 461-471. MR 2929075
  • 11. L. Brutman, On the Lebesgue function for polynomial interpolation, SIAM J. Numer. Anal. 15 (1978), 694-704. MR 0510554 (58:23250)
  • 12. M. S. Floater and K. Hormann, Barycentric rational interpolation with no poles and high rates of approximation, Numer. Math. 107 (2007), 315-331. MR 2328849 (2008f:41006)
  • 13. B. Fornberg, A Practical Guide to Pseudospectral Methods, Cambridge University Press, Cambridge, 1996. MR 1386891 (97g:65001)
  • 14. K. Hormann, G. Klein, S. De Marchi, Barycentric rational interpolation at quasi-equidistant nodes, Dolomites Res. Notes Approx. 5 (2012), 1-6.
  • 15. D. Huybrechs, On the Fourier extension of nonperiodic functions, SIAM J. Numer. Anal. 47 (2010), 4326-4355. MR 2585189 (2010m:42004)
  • 16. G. Klein and J.-P. Berrut, Linear barycentric rational quadrature, BIT 52 (2012), 407-424. MR 2931356
  • 17. -, Linear rational finite differences from derivatives of barycentric rational interpolants, SIAM J. Numer. Anal. 50 (2012), 643-656. MR 2914279
  • 18. R. B. Platte, L. N. Trefethen, and A. B. J. Kuijlaars, Impossibility of fast stable approximation of analytic functions from equispaced samples, SIAM Rev. 53 (2011), 308-318. MR 2806639
  • 19. M. J. D. Powell, Approximation Theory and Methods, Cambridge University Press, Cambridge, 1981. MR 604014 (82f:41001)
  • 20. C. Schneider and W. Werner, Some new aspects of rational interpolation, Math. Comp. 47 (1986), 285-299. MR 842136 (87k:65012)
  • 21. A. Schönhage, Fehlerfortpflanzung bei Interpolation, Numer. Math. 3 (1961), 62-71. MR 0119389 (22:10153)
  • 22. G. D. Smith, Numerical Solution of Partial Differential Equations: Finite Difference Methods, 3rd ed., Clarendon Press, Oxford, 1985. MR 827497 (87c:65002)
  • 23. T. W. Tee, An Adaptive Rational Spectral Method for Differential Equations with Rapidly Varying Solutions, PhD thesis, University of Oxford, 2006.
  • 24. T. W. Tee and L. N. Trefethen, A rational spectral collocation method with adaptively transformed Chebyshev grid points, SIAM J. Sci. Comp., 28 (2006), 1798-1811. MR 2272189 (2008k:65213)
  • 25. L. N. Trefethen and others, Chebfun Version 4.0, The Chebfun Development Team, 2011,
  • 26. L. N. Trefethen and J. A. C. Weideman, Two results on polynomial interpolation in equally spaced points, J. Approx. Theory 65 (1991), 247-260. MR 1109406 (92e:41007)

Similar Articles

Retrieve articles in Mathematics of Computation with MSC (2010): 65D05, 41A05, 41A20, 41A25, 65L12, 65D32

Retrieve articles in all journals with MSC (2010): 65D05, 41A05, 41A20, 41A25, 65L12, 65D32

Additional Information

Georges Klein
Affiliation: Department of Mathematics, University of Fribourg, Perolles, CH-1700 Fribourg, Switzerland

Keywords: Rational interpolation, barycentric form, Lebesgue function, condition
Received by editor(s): May 27, 2011
Received by editor(s) in revised form: February 6, 2012
Published electronically: March 25, 2013
Additional Notes: The authors work was partly supported by the Swiss National Science Foundation under grant No. 200020-124779.
Dedicated: Dedicated to Professor Jean–Paul Berrut on the occasion of his sixtieth birthday.
Article copyright: © Copyright 2013 American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.

American Mathematical Society