Remote Access Mathematics of Computation
Green Open Access

Mathematics of Computation

ISSN 1088-6842(online) ISSN 0025-5718(print)

Request Permissions   Purchase Content 
 
 

 

Algorithmic proof of the epsilon constant conjecture


Authors: Werner Bley and Ruben Debeerst
Journal: Math. Comp. 82 (2013), 2363-2387
MSC (2010): Primary 11Y40; Secondary 11R33, 11S25
DOI: https://doi.org/10.1090/S0025-5718-2013-02691-9
Published electronically: April 1, 2013
MathSciNet review: 3073206
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: In this paper we will algorithmically prove the global epsilon constant conjecture for all Galois extensions $ L/\mathbb{Q}$ of degree at most $ 15$. In fact, we will obtain a slightly more general result whose proof is based on an algorithmic proof of the local epsilon constant conjecture for Galois extensions $ E/\mathbb{Q}_p$ of small degree. To this end we will present an efficient algorithm for the computation of local fundamental classes and address several other problems arising in the algorithmic proof of the local conjecture.


References [Enhancements On Off] (What's this?)

  • 1. V. Acciaro and J. Klüners.
    Computing local Artin maps, and solvability of norm equations.
    J. Symbolic Comput. 30 (2000), no. 3, 239-252. MR 1775936 (2002b:11175)
  • 2. W. Bley.
    Numerical evidence for a conjectural generalization of Hilbert's theorem 132.
    LMS J. Comput. Math. 6 (2003), 66-88. MR 1971493 (2003m:11188)
  • 3. W. Bley and M. Breuning.
    Exact algorithms for $ p$-adic fields and epsilon constant conjectures.
    Illinois J. Math. 52 (2008), 773-797. MR 2546007 (2010i:11179)
  • 4. W. Bley and D. Burns.
    Equivariant epsilon constants, discriminants and étale cohomology.
    Proc. London Math. Soc. (3) 87 (2003), 545-590. MR 2005875 (2004i:11134)
  • 5. W. Bley and S. M. J. Wilson.
    Computations in relative algebraic K-groups.
    LMS J. Comput. Math. 12 (2009), 166-194. MR 2564571 (2010k:16013)
  • 6. W. Bosma, J. Cannon, and C. Playoust.
    The Magma algebra system I: The user language.
    J. Symb. Comp. 24 (1997), 235-265. MR 1484478
  • 7. M. Breuning.
    Equivariant epsilon constants for Galois extensions of number fields and $ p$-adic fields.
    Ph.D. thesis, King's College, London, May 2004.
  • 8. M. Breuning.
    Equivariant local epsilon constants and étale cohomology.
    J. London Math. Soc. (2) 70 (2004), 289-306. MR 2078894 (2005f:11267)
  • 9. M. Breuning.
    On equivariant global epsilon constants for certain dihedral extensions.
    Math. Comp. 73 (2004), 881-898. MR 2031413 (2004m:11186)
  • 10. M. Breuning and D. Burns.
    Leading terms of Artin $ L$-functions at $ s=0$ and $ s=1$.
    Compos. Math. 143 (2007), 1427-1464. MR 2371375 (2009a:11232)
  • 11. M. Breuning and D. Burns.
    On equivariant dedekind zeta-functions at $ s = 1$,
    Doc. Math., Extra volume: Andrei A. Suslin sixtieth birthday (2010), 289-306. MR 2804251
  • 12. D. Burns.
    Equivariant Whitehead torsion and refined Euler characteristics.
    In Number theory, volume 36 of CRM Proc. Lecture Notes, pages 35-59. Amer. Math. Soc., Providence, RI, 2004. MR 2076565 (2005d:19002)
  • 13. D. Burns and M. Flach.
    Tamagawa numbers for motives with (non-commutative) coefficients.
    Doc. Math. 6 (2001), 501-570 (electronic). MR 1884523 (2002m:11055)
  • 14. D. Burns and M. Flach.
    On the equivariant Tamagawa number conjecture for Tate motives. II.
    Doc. Math. (2006), Extra Vol., 133-163 (electronic). MR 2290586 (2008b:11071)
  • 15. T. Chinburg.
    Exact sequences and galois module structure.
    Annals of Mathematics 121 (1985), 351-376. MR 786352 (86j:11115)
  • 16. Henri Cohen.
    Advanced topics in computational number theory, vol. 193 of Graduate Texts in Mathematics.
    Springer, New York, 2000. MR 1728313 (2000k:11144)
  • 17. R. Debeerst.
    Algorithms for Tamagawa Number Conjectures.
    Ph.D. thesis, University of Kassel, 2011.
    URL http://kobra.bibliothek.uni-kassel.de/handle/urn:nbn:de:hebis:34-2011060937825.
  • 18. C. Fieker.
    Applications of the class field theory of global fields.
    In Discovering mathematics with Magma, pages 31-62. Springer, Berlin, 2006. MR 2278922 (2008f:11145)
  • 19. A. Fröhlich.
    Galois module structure of algebraic integers.
    Springer, Berlin, 1983. MR 717033 (85h:11067)
  • 20. Christian Greve.
    Galoisgruppen von Eisensteinpolynomen über p-adischen Körpern.
    Ph.D. thesis, Universität Paderborn, Oct. 2010.
  • 21. G. Henniart.
    Relèvement global d'extensions locales: quelques problèmes de plongement.
    Math. Ann. 319 (2001), 75-87. MR 1812820 (2002k:11214)
  • 22. D. F. Holt.
    Cohomology and group extensions in Magma.
    In Discovering mathematics with Magma, pages 221-241. Springer, Berlin, 2006. MR 2278930 (2007j:20077)
  • 23. C. U. Jensen, A. Ledet, and N. Yui.
    Generic Polynomials.
    Cambridge University Press, 2002. MR 1969648 (2004d:12007)
  • 24. J. W. Jones and D. P. Roberts.
    Database of local fields.
    URL http://math.la.asu.edu/~jj/localfields/.
  • 25. J. Klüners and G. Malle.
    A database for field extensions of the rationals.
    LMS J. Comput. Math. 4 (2001), 182-196.
    URL http://www.math.uni-duesseldorf.de/ klueners/minimum/. MR 1901356 (2003i:11184)
  • 26. F. Lorenz.
    Einführung in die Algebra II.
    Spektrum Akademischer Verlag, Heidelberg, 1997.
  • 27. J. Martinet.
    Character theory and Artin $ L$-functions.
    In Algebraic number fields: $ L$-functions and Galois properties (Proc. Sympos., Univ. Durham, Durham, 1975), pages 1-87. Academic Press, London, 1977. MR 0447187 (56:5502)
  • 28. J. Neukirch.
    Algebraic number theory.
    Springer, 1999. MR 1697859 (2000m:11104)
  • 29. J. Neukirch, A. Schmidt, and K. Wingberg.
    Cohomology of number fields.
    Springer, Berlin, 2000. MR 1737196 (2000j:11168)
  • 30. S. Pauli and X.-F. Roblot.
    On the computation of all extensions of a p-adic field of a given degree.
    Math. Comp. 70 (2001), 1641-1659. MR 1836924 (2002e:11166)
  • 31. I. Reiner.
    Maximal orders, vol. 28 of London Mathematical Society Monographs. New Series.
    The Clarendon Press Oxford University Press, Oxford, 2003. MR 1972204 (2004c:16026)
  • 32. J.-P. Serre.
    Linear representations of finite groups.
    Springer, 1977. MR 0450380 (56:8675)
  • 33. J.-P. Serre.
    Local fields.
    Springer, New York, 1979. MR 554237 (82e:12016)
  • 34. R. G. Swan.
    Algebraic $ K$-theory.
    Lecture Notes in Mathematics (76). Springer, Berlin, 1968. MR 0245634 (39:6940)
  • 35. M. J. Taylor.
    On Fröhlich's conjecture for rings of integers of tame extensions.
    Invent. Math. 63 (1981), 41-79. MR 608528 (82g:12008)

Similar Articles

Retrieve articles in Mathematics of Computation with MSC (2010): 11Y40, 11R33, 11S25

Retrieve articles in all journals with MSC (2010): 11Y40, 11R33, 11S25


Additional Information

Werner Bley
Affiliation: Universität München, Theresienstr. 39, 80333 München, Germany
Email: bley@math.lmu.de

Ruben Debeerst
Affiliation: Universität Kassel, Heinrich-Plett-Str. 40, 34132 Kassel, Germany
Address at time of publication: Heidelberger Landstraße 101B, 64 297 Darmstadt, Germany
Email: ruben.debeerst@gmx.de

DOI: https://doi.org/10.1090/S0025-5718-2013-02691-9
Keywords: Epsilon constant conjecture, local fundamental classes
Received by editor(s): October 7, 2011
Received by editor(s) in revised form: February 23, 2012
Published electronically: April 1, 2013
Additional Notes: The second author was supported by DFG grant BL 395/3-1
Article copyright: © Copyright 2013 American Mathematical Society

American Mathematical Society