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CONSTRUCTIVELY WELL-POSED APPROXIMATION
METHODS WITH UNITY INF-SUP AND CONTINUITY
CONSTANTS FOR PARTIAL DIFFERENTIAL EQUATIONS

TAN BUI-THANH, LESZEK DEMKOWICZ, AND OMAR GHATTAS

ABSTRACT. Starting from the generalized Lax-Milgram theorem and from the
fact that the approximation error is minimized when the continuity and inf-
sup constants are unity, we develop a theory that provably delivers well-posed
approximation methods with unity continuity and inf-sup constants for nu-
merical solution of linear partial differential equations. We demonstrate our
single-framework theory on scalar hyperbolic equations to constructively de-
rive two different hp finite element methods. The first one coincides with
a least squares discontinuous Galerkin method, and the other appears to be
new. Both methods are proven to be trivially well-posed, with optimal hAp-
convergence rates. The numerical results show that our new discontinuous fi-
nite element method, namely a discontinuous Petrov-Galerkin method, is more
accurate, has optimal convergence rate, and does not seem to have nonphysical
diffusion compared to the upwind discontinuous Galerkin method.

1. INTRODUCTION

The work in this paper is inspired from the recent research on the discontin-
uous Petrov—Galerkin method (DPG) of Demkowicz and Gopalakrishnan [T} 2] 3]
for the numerical solution of partial differential equations. The method starts by
partitioning the domain of interest into nonoverlapping elements. Variational for-
mulations are posed for each element separately and then summed up to form a
global variational statement. Elemental solutions are connected by introducing hy-
brid variables (also known as fluxes or traces) that live on the skeleton of the mesh.
This is therefore a mesh-dependent variational approach in which both bilinear and
linear forms depend on the mesh under consideration.

In general, the trial and test spaces are not related to each other. In the standard
Bubnov—Galerkin (also known as Galerkin) approach, the trial and test spaces
are identical, while they differ in a Petrov—Galerkin scheme. Traditionally, one
chooses either Galerkin or Petrov—Galerkin approaches, then proves the consistency
and stability in both infinite and finite dimensional settings. The DPG method
introduces a new paradigm in which one selects both trial and test spaces at the
same time to satisfy well-posedness. In particular, one can select trial and test
function spaces for which the continuity and inf-sup constants are unity. Given a
finite dimensional trial subspace, the finite dimensional test space is constructed in
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such a way that the well-posedness of the finite dimensional setting is automatically
inherited from the infinite dimensional counterpart.

The DPG method in [2] starts with a given norm in the trial space and then
seeks a norm in the test space in order to achieve unity continuity and inf-sup
constants. Another DPG method in [3] achieves the same goal but reverses the
process, i.e., it looks for a norm in the trial space corresponding to a given norm
in the test space. Clearly, this is one of the advantages of the DPG methodology,
since it allows one to choose a norm of interest to work with, while rendering the
error optimal, i.e., smallest in that norm. Furthermore, the DPG methods have
been shown to be robust and provide optimal hp-convergence. We shall not discuss
the advantages of the DPG methods any further here, and the readers are referred
to the original DPG papers [, 2, B] for more details.

Here, we pursue a different option. In particular, we shall not prescribe norms
in either the trial and test spaces. Instead, we permit the structure of the problem
to determine its “natural” energy norms. Our goal is to develop a single framework
that adapts to the problem at hand, while automatically generating accurate finite
element methods with trivially-proven and guaranteed stability. Similar to other
DPG methods, once one chooses the test or trial basis function, the other has
to be solved for. Depending on how one applies our theory to problems under
consideration, basis functions can be trivially obtained or solved for through an
adjoint partial differential equation, as we shall show.

The remainder of the paper is organized as follows. In Section 2] we first de-
velop a single framework for general variational problems that can be written in
terms of bilinear and linear forms. Then, we develop a few analytical results that
help us prove the optimality of the resulting finite dimensional approximations and
their well-posedness. In Sections Bland @, we apply our single framework, but using
two different points of view, to linear hyperbolic equations of advection-reaction
type. We shall show that the framework constructively leads to an existing sta-
bilized hp-discontinuous Galerkin (DG) method and a new hp-DPG method for
advection-reaction equations. We discuss characteristics of each method and their
hp-convergence in detail. The chief purpose of the paper is to introduce our the-
ory and to demonstrate its usefulness to partial differential equations in deriving
accurate and stable finite element methods. We further strengthen our findings by
several one- and two-dimensional numerical examples in Section Bl and Section
concludes the paper.

2. ABSTRACT THEORY DEVELOPMENT

In this section, we develop a theory for constructive approximations of linear
partial differential equations. Our goal is to construct finite dimensional approx-
imations that are guaranteed to be trivially well-posed with unity continuity and
inf-sup constants. Here, trivial well-posedness means that the well-posedness of
the finite dimensional problems is trivially inherited from their infinite dimensional
counterparts. The starting point of our theory, to be shown, is not new since our
work is inspired by the recent discontinuous Petrov—Galerkin (DPG) methodol-
ogy of Demkowicz and Gopalakrishnan [1 2, [3]. However, we shall point out the
differences between our approach and the existing DPG methods.
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Let U and V' be Hilbert spaces over the real line (generalization of our theory to
the complex field is straightforward). Consider the following variational problem:

(1) Seek u € U such that
a(u,v) =L(v), Yv eV,

where £ (+) is a linear form on V, a(:,-) is a bilinear form satisfying the continuity
condition with continuity constant M,

(2) la (u, 0)] < M [|ul[y [Jv]ly

the inf-sup condition with the inf-sup constant -,

(3a) Iy > 0: inf sup M =7
uelU ey |UHU ”vHV

and the injectivity of the adjoint operator (to be defined),
(3b) (a(u,v)=0, YuelU)=(v=0).

If @) and @) hold, then by the generalized Lax-Milgram theorem [4 [5] (also
known as the Banach-Necas-Babuska theorem [6]), () has a unique solution and
the solution is stable in the following sense:

1
lully < 5 1l

where V' is the topological dual of V. Note that for convenience in writing, we
have abused the notation sup, ¢y instead of sup, ¢y, o (and similarly for inf).

Now let U} C U and V};* C V be two finite dimensional trial and test spaces,
and consider the following finite dimensional approximation problem:

() Seek uy, € U} such that
a(up,vy) = L(vy), Yo, € Vi
If dim Up, = dim V}, = n, and the following discrete inf-sup condition

(5) Iy, >0: inf sup M >
un€Un v, eV, [[tnlly llvnlly

holds, then the finite dimensional problem (4] is well-posed by an application of the
generalized Lax-Milgram theorem for finite dimensional problems (also known as
the Babuska’s Theorem [4] [7]). In general, however, the finite dimensional problem
@) does not inherit the well-posedness of the infinite dimensional counterpart ()
except for some special circumstances. One, therefore, has to prove the nontrivial
discrete inf-sup condition [6].

In this paper, we constructively develop a class of finite dimensional approxima-
tions in which the discrete inf-sup condition (&) trivially follows from the continuous
one (Ba). Before doing so, let us first discuss the approximation error between the
finite and infinite dimensional solutions. To begin, we recall the following projection
result in which the norms of the projection and its complement are equal.

Lemma 2.1. Let Uy, C U be a subspace of a Hilbert space U. Suppose P : U — Uy,
is a projection, i.e., P2 = P, and P is not null or identity. Then

1Pl =T =PIl

where the norm || P|| is induced from a norm in U, which is in turn induced from
an inner product in U.
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Proof. Many proofs of this result can be found in [§]. a

If we define P as uj, = Pu through
a(up,vp) = a(u,v), Vop, €V,

then, by the discrete inf-sup condition (&), it is trivial to see that P is a projection
operator. In addition, we can bound the norm of the projection operator P as
follows.

Lemma 2.2. There holds | P]| < %
Proof. See [9] for a simple proof. O

Now comes the projection error result.

Theorem 2.3 (Babuska [7]). Suppose that both the continuous problem () and
discrete problem () are well-posed, then

M
U — U < — inf |lu—w .
[ rlly < it | wlley

Proof. A standard proof that uses Lemmas 2.1l and 2] can be found in [I0,[9]. O

The following best approximation error result immediately follows from Theorem
2.9l

Corollary 1. If M =y, then
- = inf — .
lu =l = infJlu =il

In particular, M = v, = 1 satisfies Corollary I That is, if the continuity
constant and the discrete inf-sup constant are unity, then the error incurred from
the discrete approximation () is the best, i.e., it is smallest. Up to this point,
although not in the form presented here, the theory has already been discussed in
the DPG methods [IL [2, B]. As can be seen, there are two spaces to work with,
namely the trial and test spaces, respectively. The first DPG method [2] starts with
a given norm in the trial space U, and then seeks a norm in the test space V so
that M = v = 1. In the second DPG method [3], on the other hand, one defines
a norm in U from a given norm in V such that M = « = 1. Clearly, this is one
of the advantages of the DPG methodology since it allows one to choose a norm of
interest to work with while making the error optimal, i.e., smallest, in that norm.

In this paper, we explore a different option, namely, we shall not prescribe either
norms in the spaces U and V. Instead, we let the problem determine its “natural”
energy norms, thus which norms to be chosen to work with is out of the question in
our new approach. Our single-framework method will be applied to linear hyper-
bolic equations of advection-reaction type, and we shall show that it constructively
leads to an existing stabilized numerical method and a new one. Nevertheless, care
must be taken since our idea may not be applicable for cases in which one prefers
to work with particular norms.

The rest of this section exploits the goal of having M = v = 1 to some extent.
In particular, we characterize a few properties for problems having M = ~v = 1,
and then present sufficient conditions for the infinite dimensional problem to have
M =~ =1. Next, we study constructions of finite dimensional subspaces U} and
Vi such that the well-posedness of the resulting finite dimensional approximation
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problems is trivially inherited from the infinite dimensional settings. In fact, as
shall be shown, our method automatically delivers unity discrete continuity and
inf-sup constants, i.e., My = v, = 1. It should be pointed out that the rest of our
theory is general so that it can apply not only to our method in this paper, but
also the other DPG methods.

We first note that the inf-sup condition (Bal) is typically defined by taking first
the supremum over the test space V' and then the infimum over the trial space U.
However, the following well-known result shows that as long as the well-posedness,
and hence the continuity and inf-sup constants, is concerned, the distinction be-
tween the test and trial spaces are irrelevant. That is, there is no reason for us to
favor one space over the other.

Lemma 2.4. The problem () is well-posed if and only if

3y > 0: inf supM: inf supmzy.
wel pev |[ully vl veVueu llvlly [[ully
Proof. See [9] for a proof. O

We first make the following simple observation.

Lemma 2.5. The following are equivalent:

(i) M=~=1.

(ii) Yu € U we have ||ul|,; = sup,cy ‘Tl(:—l‘z)
a(u,v)

llully

(iii) Yv € V we have ||[v||y, = sup,cp

Proof. By Lemma [24] it is sufficient to prove the equivalence of (i) and (ii).
(i) = (ii): From the continuity condition we have

oy 0:0)

vev [[vlly

< lully

which, together with the inf-sup condition, implies (ii).
(ii) = (i): (ii) is equivalent to

””HV T wev ””HV N v
sup ) 5
veV HUHV
which implies (i). O

The following useful result will be used as guidelines to construct the “natural”
norms in U and V spaces such that M =~y = 1.

Theorem 2.6. Suppose the continuity condition holds with unity continuity con-
stant, 1.e.,
a(u,v) < [lully [[olly -
Then there holds M =~ = 1 if either of the following conditions holds:
(i) For each uw € U\ {0}, there exists v, € V' \ {0} such that

a(u,vu) = |[ully [[vully -
(ii) For each v € V '\ {0}, there ezists u, € U \ {0} such that

a (Uy,v) = ”uvHU ”U”V
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Proof. We shall show that (i) is a sufficient condition for M =~ =1 to hold, and
an analogous proof can be done for (ii). It is straightforward to have

a (u, vy) a(u,v)
l[ully = =~ < sup < ully
loully, ~ wev [lolly
and Lemma concludes the proof. |

Remark 2.7. In general, the continuity and the inf-sup conditions are not related
to each other, and it is typically more difficult to establish the latter. However,
Theorem shows that if the continuity constant is unity and the equality is
attainable, then the continuity condition actually implies the inf-sup condition and
the inf-sup constant is unity as well. This important observation is the key result
in this paper and will be exploited throughout for the advection-reaction problem.

It should be pointed out that if both conditions in Theorem hold, then the
3-tuple (U, V,a(-,-)) is known as a dual pair. That is, the bilinear form a (-, ) puts
U and V in duality.

To the end of the paper, we call the norms in U and V spaces optimal norms
if both continuity and inf-sup constants are unity in these norms. Moreover, we
also call the pair v and v, (and hence for u, and v) as the optimal trial and test
functions, respectively. Here, optimality is in the sense of Corollary [l

We are now in position to construct the approximation subspaces U;} and V"
such that the discrete continuity and inf-sup constants are unity.

Lemma 2.8. Let the assumptions of Theorem hold respectively for item (i) and
(i) below.
(i) Let Uy C U be a subspace, and construct
Vit = span {vy, €V :up € UYa(un,vy,) = lunlly [[vu, v} -
(ii) Let Vi CV be a subspace, and construct
Uy = span {uvh e U vy € Vi a(uy,,vn) = |lonlly ||uvh,HU}-

If the pair of test space V;* and trial space U} are constructed by either (i) or (ii),
then there holds

My =n =1,
and the discrete problem (@) is well-posed if imU}' = dim V.

Proof. Again, it is sufficient to show item (i). M, = 1 is a direct consequence of
M = 1. By construction, we have, for each u;, € U},
a (Up, Uy, ) a (up,v) a (up,vp)

[unlly = ———~ =sup ————= = sup
v [[Va, v veV ||U||V v EV ||UhHV 7

which implies 7, = 1. The well-posedness of the discrete problem is now clear by
the Babuska’s theorem. O

It can be seen that Theorem and Lemma [2.8] do not explicitly specify either
the optimal test function v, or the optimal trial function u,. A general-purpose
approach for choosing an optimal pair of functions is through the Riesz representa-
tion theorem as we now show. Moreover, if a basis of the trial space U;' is specified,
we can determine the corresponding basis in the test space and vice versa so that
the finite dimensional problem is well-posed with M} = v, = 1.
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Theorem 2.9. Define the map T : U 5w — Tu € V' as (Tu,v)y, . = a(u,v).
Denote vry, as the Riesz representation of Tu in V. Suppose a (-, ) is continuous
with unity constant and assumption (i) of Theorem holds. Take Uy C U and
define

Vi, = span {vry, €V :u, € U},
Then, the following hold:
(i) Mp =7, =1
(i) Let U} = span{p;};_,, where ; € U,i = 1,...,n. Then {vpy,},_, is a
basis of V;.
Proof.

(i) By Lemma 28 it is sufficient to show that a(un,vru,) = |unlly V1w, [y -
But, by the proof of Theorem [Z.6] the definition of norm in V', and the
Riesz representation theorem, one readily has,

a(up,v <Tuh U>
[unl|,;, = sup M - MM VIXY | Tun |y = llvrw, v »
veV HUHV veEV HUHV
which yields,
a(uhavTu;L) = <Tuhvau}L>V’><V = HvTuh %/ = Hu”U HUTU}L V-

(ii) By virtue of the Riesz representation theorem, vr,, is linear in Tu. Together
with the linearity of T', we conclude that Vj, = span {vry, };— . It remains
to prove that the set {vpy,}7; is independent. Assume, on the contrary,
that there exists ¢ € {1,...,n} such that «; # 0 and

n
Z a;vry, = 0= UT(Z?:1 ) =0,

i=1

which, by the injectivity of T, implies

Z Q;P; T (Z ai@i)
i=1 U i=1 v

which, by the independence of {¢;};;, in turn implies

Oéi:O, Vi:l,...,n,

:07

a contradiction.
O

If we call the result in Theorem 2.9] as the primal approach, then using Lemma
24 we readily have the following “dual” analog.

Theorem 2.10. Define the adjoint map T : V 3 v = T'v € U as (T'v,u) oy =
a(u,v). Assume that T' is injective, i.e., BL) holds. Denote urr, as the Riesz

representation of T'v in U. Suppose a (-,-) is continuous with unity constant and
assumption (i) of Theorem holds. Take V' C'V and define

Ul = span {ugr, € U v, € Vi'}.
Then, the following hold:
() My = = 1.
(ii) Let Vi = span{¢;};_,, where ¢; € V,i =1,...,n. Then {upy,},_, is a
basis of U}'.
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In the sequel, we shall not distinguish v,, and vr, as well as u, and ur, since
we shall work exclusively with the Riesz representations.

We will use only the primal approach to investigate infinite dimensional settings
and then deduce the properties of the resulting finite dimensional settings. That
is, we start with a basis function in the trial space U and then derive the corre-
sponding optimal basis function in the test space V. Of course, we can also take
a dual approach, i.e, we start with a basis in the test space V' and then seek the
corresponding optimal basis in the trial space U. This will as well lead to well-
posed approximation methods with M} = 7, = 1 by Theorem 210l However, the
approximability is questionable since the resulting finite dimensional trial space is
no longer designed to accurately approximate the exact solution.

3. THE FIRST WELL-POSED APPROXIMATION OF
LINEAR SCALAR HYPERBOLIC EQUATIONS

In this section, we discuss in detail how to apply the primal method developed
in Section 2l to a weak formulation of advection-reaction problems. The consistency
and well-posedness of the infinite dimensional setting are analyzed at length. We
shall use the Cauchy—Schwarz inequality to detect the natural norms so that the
bilinear form under consideration is continuous with M = 1. The conditions for
equalities to be achievable in the Cauchy—Schwarz inequality then allow us to find
optimal pair of functions in U and V. In fact, the Riesz representation turns out to
be a candidate for equalities to happen. Using this fact along with Theorem we
obtain a finite dimensional approximation method with guaranteed well-posedness
and My =y, = 1.

3.1. Infinite dimensional setting. Our problem of interest is the first order
scalar linear hyperbolic equation of the form

(6a) B-Vu+pu=f, inQ,
(6b) u=g, onl,

where I' = {x € 90 : n(x) - B8 < 0} is the inflow boundary; n (x) denotes the out-

ward normal vector at x on the boundary 9. Assume 8 € [Wh> (Q)]d with
d € {1,2,3} denoting the dimension of the problem, u € L* (Q), f € L*(2), and
g€ L%,n (T") with

B (0) = {w: ully o = [ 18nlfuf ar < oo
and u € H}; with
H5(Q)={uel’(Q):8-Vue L*(Q)}.
The following well-posedness of the transport equation (@) is proved in [IT].
Lemma 3.1. Assume that Q is a Lipschitz domain. Let
W:{UGHE,(Q) ulp =0}

and define
Wouw Tu= 8 -Vu+puuc L?(Q).
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Suppose that B is a filling field, i.e., there exists a characteristic line of the vector
field B starting from I' and arriving at (almost everywhere) x € § in finite time.
Then T is a bijective map from W to L* (Q).

We partition the domain © into N°' nonoverlapping elements K »hi=1...,N el

such that €; = Ujvzdl K; and Q = Q.. Here, h is defined as h =
max;ey,. yeydiam (K;). In addition, we denote by &, with cardinal number
Ned the set of all unique faces in the mesh, namely, the mesh skeleton. In this
paper, the term “faces” is used to indicate either edges of 2D elements or faces of
3D elements. Finally, we require 3-n|, € L (e) for e = 1,..., N°? where n is the
normal vector on face e. Multiplying (Gal) by a test function v, integrating by parts,
and introducing the single-valued flux ¢ € L3, (€x) at the element interfaces, we
have,

Ncl

(7) ;/K] [—uV - (Bv) + puv] dx—l—/8 , 1ok, \rB - nquds

J

Nel
:Z/ fvdx—/ B - ngv ds,
j=1 Kj BKjﬁF

with 155, \r denoting the indicator function (also known as the characteristic func-
tion) of 0K; \ I'. Clearly, for elements with characteristic faces, i.e., 3-n =0 on
0K, the boundary integrals corresponding to these faces simply drop out and g is
allowed to be undefined on these boundaries. Next, integrating by parts one more
time gives

Nel
(8) Z/ (B Vu+ pu)vdx + ,8~n(13Kj\pq—u)vds
j=1 K; 0K

Ncl

:Z fvdx—/ B - ngvds.
j=179K; OK ;NI

If we choose ’U|Kj € L?(Kj), then the trace v|aKj is not defined. Therefore, we

introduce a new hybrid variable r that lives in the space H?Z;L%n (0K;). Unlike g,
which is single-valued on a face of the skeleton, r is allowed to have double values
depending on the side of that face. With the introduction of r, (§) can be rewritten
as

Nel

9) a(“’v)_;/Kj B Vut vt [ 8on(Lora ) rds
Nel
— (V)= dx — - ngr ds,
(v) ;/Kjfv X /6ij1"6 ngrds

with u = (u,q), v = (v,r). We define the trial and test spaces as
U= {u Sul, € Hy (K)) x L3, (0K;) .j = 1,...,Nel} — HY () x L3 (),

V= L% (@) x T L2, (&) -

j=
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We first study the consistency of the weak formulation ().

Proposition 1 (Consistency). If u is a solution of @), then (u,q= uls ) is a
solution of [@). Conversely, if (u,q) € L* () N Hj () x L, (En) is a solution
of @), then u is a solution of (@)).

Proof. If w is a solution of (@), then it is straightforward to see that (u, q= ul Eh)
is a solution of ([@).

Conversely, let (u,q) € U, with u € L2 (Q) N Hé_n (Q4,), be a solution of ([@) for
all (v,r) € V. First, taking v = 0 and r € L%, (e) where e € 9K is an internal
or an outflow face, for some j € {1, e ,NEI}, yields B - ng = 3 - nu. This implies,

for an internal face, 8- nu~ = B - nu™. Similarly, for an inflow face we obtain
B-nu=3-ng.

Next, taking v € D (K;) = Cg° (K;) and r = 0, then (@) implies
(10) B-Vu+puu=f, inkK; j=1,...,N°

in the distributional sense. Since B - Vu + pu, f € L?(K;), ([[0) also holds in
L? (K;). Finally, taking v € D (1), integrating by parts equation ({), and using
B-nu~ =B -nut and u € L? (Q), we obtain the following identity,

—/u,B~Vv dx:/ (f —pu+ V- Bu)v dx,
Q Q
which implies, in the distributional sense,
V- (Bu)=f—pu+V-Buel* ),
which in turn implies
B-VueL*(Q).
Hence, ([I0) is in fact valid globally in . O

Guided by Theorem 26 we are seeking norms in spaces U and V such that the
continuity constant is unity and the equality in the continuity condition is achiev-
able. An approach to obtain this goal is to apply the Cauchy—Schwarz inequality,
ie.,

Ncl
a(u,v) <Y 18- Vu+ pul pa ey [0l L2,

J=1

+ HlaKy\Fq - uHLg.n(aKj) HT”L’;;,,,(@KJ)

=

Nel

2 2
< Z 18- Vu+ pull7z ) + [Lor,\ra — “HLg.n(aKj)
=1
[lall¢
1
Nel 2
2 2
(11) X Z 1ol 2,y + ||T\|Lg,‘n(az<j)
=1

lIvilv

It is clearly that the functionall|-||,, defined above is a norm. Before showing that the
functional [-||; is indeed a norm, let us check whether the equality is attainable.
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Since the Cauchy—Schwarz inequalities are employed, one easily sees that, given
u=(u,q) € U, if vy = (vy,ry) is defined by

(12a) vy =B -Vu+pu, in Kj,
(12b) ra =sgn (8- n) (laKj\pq — u) , on 0Kj,
then the equality is attainable, i.e., a (u,vy) = |[ul|; [[Vul|;,. Notice that vy is in

fact the Riesz representation of Tu (see Theorem [Z9] for the definition of T'). At
this point, we immediately have the well-posedness of the weak formulation ().

Theorem 3.2 (Well-posedness). Assume that B is a filling field. Then, the weak
formulation @) is well-posed with M =~ =1 in the norms defined in (III).

Proof. M =~ =1 is a direct consequence of Theorem What remains to be
proved is the adjoint injectivity condition ([BH). Let v € V and assume that
(13) a(u,v)=0, Yuel.
Taking u = 0, then ([I3)) implies
Ncl
Z/ B-nlpx\r qgrds =0, Vqe L%_n (&),
j=170K;
which in turn implies » = 0 on &, \ T since the map
L%»n (0K;)>q— B-nqg € L%-n (0K,)
is surjective due to 0 < ¢; < ||B- nHLoc(aKj) < ¢z < 00. Now, if uw € W, then ([3)
implies
/ (B-Vu+pu)vdx =0, YueW,
Q
which, together with the surjectivity of Tu = 8 - Vu + pu from Lemma BT yields
v =01in Q. Finally, with v =0in Q and r =0 on &, \ T', (I3) becomes
Nel
> B-nurds=0, YueHj().
j=1 8[(]‘ nr
Since the trace map Hp (K;) > u ulpg, € L3, (OK;) is surjective, the preceding
equation shows that » =0 on I'. Hence v = 0. ]
Having proved the consistency and the well-posedness of the weak formulation

@), we proceed with finding optimal pairs of trial and test basis functions. For
basis functions of the form ¢ = (0, ¢) € U, where ¢ is a function in L%,n (&n), the

corresponding basis functions in V for j = 1,..., N°, are given by

(14a) vp =0, in Kj,

(14b) r¢ = log\r¢sgn(B8-n), on IKj.

Similarly, for basis functions of the form ¢ = (¢,0), where ¢ € H}; (Qp,), the
corresponding basis functions in V for j = 1,..., N° are given by

(15a) Vo =08 -Veo+up, inKj,

(15b) reo =—psgn(B-n), onJdKj.

Next, it is natural to substitute the test functions (I4]) or (IH)) into (@) to establish
equations to solve for the unknowns u = (u,q). Let us proceed with the generic
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test basis in (I4) first. If ¢ is not a zero function on the interface 0K; N 0K of
elements K; and K; and zero elsewhere, then testing with v defined in (I4) the
weak formulation (@) becomes

/ B-n|(g—{ul) ¢ ds =0, VéeIL3, (0K NIK;),
0K, NOK;

where {{u}} = % denotes the average. The positive and negative signs indicate
element interior and exterior, respectively. Since (¢ — {{u}}) € L%, (0K, N OK;),
the preceding equation implies

Similarly, taking ¢ to be a nonzero function on (92 \ I') NOK; and zero elsewhere,
and then testing (@) with vy defined in (I4), we obtain,

g=u ondQNIKj.

On the other hand, due to the indicator function 15k \r, there is no test function
re on the inflow boundary faces. In summary, testing with the test basis (I4]), the
unknown ¢ on the skeleton is found explicitly as

{u}} on 0K, NOK;
(16) qz{ v on (0Q\T)NOK;.

As a result, the trial space can be rewritten as
U= {u: uly, € Hj (Kj)} = Hp (),

and the norm in U now becomes

(17)
Ne! ) 9 3
2 2
fully = 18 u+ sl + |31 Il onony | -
= L3 (0K ;\I)

which is essentially the norm in which the upwind DG method is stable; see [12],
for example.
We are now in position to prove that (7)) indeed defines a norm in U.

Proposition 2. Assume that 3 is a filling field, then the functional
[l U= [0, 00)
defined in ([I0) is a norm.

Proof. The fact that the functional ||-||; satisfies the positive homogeneity and the
triangle inequality is obvious. Therefore, it remains to prove that ||ul/;, = 0 implies
u = 0. We first consider elements whose faces are subsets of the inflow boundary.
In this case, ||u||,, = 0 implies

(18a) B-Vu+ pu =0, in K,
(18b) u =0, on 0K; NT,
(18¢) [u] =0, on 0K;\T.

By Lemma Bl v = 0 in K is the unique solution of (I8a)) and (I8L)). Since 3 is a
filling field, 0K; \T must be inflow boundaries of other adjacent elements. However,
([IBd) implies that u = 0 on these inflow boundaries. By induction, we conclude
that v = 0 is zero on €, and this ends the proof. O
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Next, substituting the optimal test basis function (3] into (@) we have

Nel

(19) Z/K (Bt ) (8- Vot pig) dx— [ 18-l (Loucyra =) o s

J
Ncl

=;/Kjf(ﬁ-vw+uw)d><+/a 181l g ds.

K;AT

We can simplify ([3)) further by using the explicit value of ¢ in (I6]), renaming ¢ to
v, and rewriting the bilinear and linear forms in (@) as

Nel
a(uv)=>" [ (B Vu+uu) (B Vv+ ) dx
j=1"5;
1
+—/ |ﬁ-n|[[u]]vds+/ |8 - n|uvds

2 BKJ\BQ BKjﬁF

Nel
(20) Z(v):Z/ f(,B-Vv—l—/w)dX—l—/ |8 - n|gvds,

j=1"Kj OK,;NT
where the jump operator [u] = v~ — u™ is employed. It is important to point

out that the weak formulation (20) is completely equivalent to (@) except that the
auxiliary hybrid variables ¢ and r are now eliminated, and that the trial and test
spaces are now the same, i.e.,

U=V =H,(MW).

3.2. Finite dimensional setting and convergence analysis. Now, we select
the same finite dimensional subspace for both trial and test functions, i.e.,

Vit =Uj = span{p;, € Uji=1,...,n}.
The consistency of the weak formulation (@) on finite dimensional subspaces U} and
Vi* is automatically inherited from Proposition[ll On the other hand, using Lemma

we immediately have the well-posedness of the finite dimensional approximate
problem.

Theorem 3.3. Let the bilinear form a(-,-) and the linear form £(-) be defined as
in @20). The following problem,

Seek up, € Uy’ such that
a(up,vp) = L(vy), Yo, € V),
is well-posed with My = v, = 1.
That is, our effort in Section 2] is now paid off by the trivial well-posedness of
the finite dimensional problem, which is typically not using other methods [6].

In order to use polynomial approximation results [13, (14 [15] [16], we specify the
finite dimensional subspaces U}’ and V" as

Up = {u € Hy () : uly, € PP (K;),j = 1,...,N°1} — v,

where PP denotes the polynomial spaces of order at most p. For d € {2,3}, PP
could be the usual polynomial spaces for triangular and tetrahedral meshes, and
the tensor product polynomial spaces for quadrilateral and hexahedral meshes.
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At this point, a closer look tells us that our simplified weak formulation (20))
is one of the existing least squares DG (LSDG) methods [I7]. However, it is im-
portant to emphasize that, for the DG methods in general, and the other LSDG
methods in particular, one usually starts by introducing a numerical flux (typi-
cally borrowed from finite volume methods). One then defines bilinear and linear
forms (adhoc typically) over finite dimensional polynomial subspaces, and proves
the well-posedness of the resulting finite dimensional approximate problem with
some prescribed norm. Here, starting from the requirement of having unity conti-
nuity and inf-sup constants, and choosing the weak formulation ([@) to apply our
theory developed in Section 2] we constructively (and accidentally) derive an LSDG
method from a well-posed infinite dimensional setting. The distinct feature of our
method is that the flux is introduced as a new unknown, and then found by fulfilling
stability. It should be pointed out that our theory is general in the following sense.
If it is applied to different weak formulations, one will constructively obtain differ-
ent numerical methods, again, with trivial well-posedness for the finite dimensional
approximation problem, as we shall show in the next sections.

Since our resulting approximation method coincides to an LSDG approach, the
following hp-convergence result is immediate from [I7].

Theorem 3.4. Suppose that u|Kj € H% (Kj),s; > %,j =1,...,N% and the mesh
is affine. Then, there exists a positive constant C, independent of h; = diam (K;),
pj, and u such that

Net 20’j-2
2 j 2
lu = unlly; < CZ ﬁ ‘“|H%‘(Kj) J
j=1tj
with p; > 1 and 0 < 0; < min (p; +1,s;).
Furthermore, if the mesh is quadrilateral or hexahedral and the exact solution u
is elementwise analytic, then the following estimation holds:

el -
) N hj 20;—2 .
o=l < €7 (Z2) T pyem fmeas (K5)],
j=1

where C' depends on u, d, and the shape-regularity, b; depends on d, and meas (K;)
denotes length, area, and volume of K; ford =1, d =2, and d = 3, respectively.

Proof. A proof can be found in [I7] and the references therein. O

Remark 3.5. By Corollary [Il the error estimation is optimal in both h and p. In
particular, if the exact solution is elementwise analytic, our approximation method
delivers exponential convergence in p.

4. THE SECOND WELL-POSED APPROXIMATION OF
LINEAR SCALAR HYPERBOLIC EQUATIONS

In the first application of our abstract theory for linear scalar hyperbolic equa-
tions in Section B we have chosen the weak formulation (@) obtained after integrat-
ing (@) by parts twice. In this section, we apply our theory to the weak formulation
[@ obtained after integrating (€]) by parts once. As will be shown, we obtain a
different well-posed infinite dimensional setting, hence leading to different finite
dimensional approximation with guaranteed well-posedness and M}, = v, = 1.
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4.1. Infinite dimensional setting. Our starting point is the weak formulation
([@ obtained by integrating (@) by parts once. This formulation can be written in
a more compact form as

Nel
1
(21) Z/ - (Bv) + ] dx+2 B - ngq[v] ds
oK
Nel
—Z/ fvdx—/ B -ngvds,
SKJ-OF
where on the outflow boundary we conventionally define v = —v~ and on the

inflow v+ = v~. We define the trial and test spaces as
U ={us uly, € L* (K;) x Ly (0K;) } = L2 (90) % Ly (E0).
V= {v L)y, € Hp (Kj)} — HS ().

Again, guided by Theorem [2.6] we are looking for natural norms in spaces U and
V such that the continuity constant is unity and the equality in the continuity con-
dition is achievable. Similar to Section Bl we apply the Cauchy—Schwarz inequality
to obtain,

Nel
(u,v) < Z -V l“’”[ﬁ K;) HU”LZ K;)
1
T3 HQHLgn(aK]‘) I[v ]]HL2 (0K;)
o :
< X 30 ol + |55
L3 (0K;)
Ivily
1
Nel 2
2
(22) x A2 llullzer,y +
j=1 n(0K;)

llully

Equalities in ([22]) are achievable if we use the Riesz representations, i.e., given
u=(u,q) €U,

(23a) u=—-V-(Bvy) + pvy, in Kj,
(23b) g=sgn(B-n)vy], ondKj.

Once we know that the equality is obtainable under condition (23], the consistency
and well-posedness of [21) with respect to the norms defined in ([22]) similarly follows
Proposition [[l and Theorem

We next use (23] to find optimal pairs of trial and (corresponding) test basis
functions. For basis functions of the form ¢ = (0,¢) € U, where ¢ is a function in
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L%,n (En), the corresponding basis functions in V are given by, for j = 1,..., N,

(24a) -V - (Bvg) + pvy =0, in K,
(24b) [ve] =sgn(B-n)¢, ondK;.
Similarly, for basis functions of the form ¢ = (¢,0) € U, where ¢ € L? (€,), the
corresponding basis functions in V' are given by, for j =1,..., N°,
(25a) -V - (Buy) + pv, =, in Kj,
(25Db) [ve] =0, onJKj.

Once the test functions are found using 24)) or (2H), we can substitute them into
1) to establish equations to solve for the unknowns u = (u,q). Let us proceed
with the generic test basis in ([24)) first. If ¢ is different from zero on e € &), and
zero elsewhere on the skeleton, then testing ([2I) with v = (0, vy4) yields,

(26) /elﬂnlqsbds—/ﬂhqusdx—/rﬂng%d&

As can be seen in (2G), for each ¢ € L, (e),e € &, q € L, (e) can be locally
solved independently of u.

Now if [y, is a nonzero function in Kj; but zero elsewhere, then testing (2I)
with v = (0,v,) gives,

(27) /ugpdx:/ fv¢dx—/ﬁ-ngv¢ds,
Kj Qp T

which shows that the unknown u can also be computed locally element-by-element
and independently of ¢.

4.2. Finite dimensional setting and convergence analysis. Now, given a fi-
nite dimensional subspace

Up = span{u;,i=1,...,n} CU,

where
_ ¢z:(07¢1) izlu'-'umu
u; = .
p; =(pi,0) i=m+1,...,n,
where ¢; and ¢, are local functions previously used to obtain (26]) and 27)). The
corresponding optimal finite dimensional test space is given by

Vit = span {vy,,i =1,...,n},

with basis vectors v, computed as in [24]) or (23]).

The consistency of the weak formulation (26) and (27)) on finite dimensional sub-
spaces U’ and V;" is automatically inherited from the infinite dimensional setting.
On the other hand, using Lemma we immediately have the well-posedness of
the finite dimensional approximate problem similar to Theorem

Theorem 4.1. Let the bilinear form a (-,-) and the linear form £ () be defined as
in 28) and 7). The following problem,

Seek u} = (uy,qp) € U such that
a(up, vi) =4L4v}), YWpeVp,

is well-posed with My = v, = 1.
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It is important to point out that the computation of each test basis function
requires a solution of the adjoint hyperbolic equation ([24]) or (28). Since 8, and
hence —(, is assumed to be a filling field, it follows that starting from an element
K, it is always possible to identify the neighbor elements, called outflow elements
of K;, whose inflow faces (with respect to the adjoint flow) are the outflow faces
of K;. We continue this procedure with the current outflow elements, and by
induction, we can march to the inflow boundary in finite time since there is a
finite number of elements in the mesh. In other words, the adjoint flow starting
from an element K; must arrive at the inflow boundary I' by “mass conservation”
in finite time for any triangulation. Once these elements are found, they form a
“streamtube” starting from K; to the inflow boundary. Note that a streamtube is
allowed to have elements whose faces are both inflow and outflow with respect to
the adjoint velocity field —3. Therefore, we can either march the solution for an
optimal test function element by element along a streamtube or solve for it on all
elements simultaneously. Once the finite dimensional space V,* is constructed, the
weak formulation (2II) becomes decoupled weak formulations (26]) and (21). This
allows us to locally compute the trace ¢ face-by-face, and the approximate solution
u element-by-element, independently.

The solution procedure can be divided into offline and online stages as follows.
Since the computation of the test basis functions does not depend on the boundary
condition ¢g and the forcing f, it is done once for the offline stage. Furthermore,
solving for each optimal test function is an independent task, and hence can be
done in parallel. As a result, the offline cost is in fact the same as the cost of
solving for one optimal test function if the parallelization is fully exploited. After
that, the test basis functions can be used for any g and f, while preserving the
best approximation property. Therefore, in the online stage, our resulting finite
dimensional approximation method provides fast and best (in the ||-||,-norm) so-
lution w for any admissible g and/or f. It is fast because we only need to locally
solve for u element-by-element by inverting the elemental mass matrices as shown
in (217). It is best in the ||-|[,-norm due to Corollary [l We should point out that
the forcing f is typically projected onto the subspace span {p;,i =m+1,...,n},
and the boundary condition g onto span {¢;|,i =1,...,m}. Thus, the right side
of 7)) can be evaluated once in the offline stage for the basis functions in sub-
spaces span {¢;, 4 =m+1,...,n} and span{¢;|r,i =1,...,m}. Clearly, if f =0,
the online stage is extremely fast and negligible in cost. This is particularly use-
ful for real-time source or boundary condition inverse problems using optimization
method in which one has to solve the forward equation (@) many times with differ-
ent g and/or f. Moreover, our numerical results show that the offline cost may be
much more than offset by the optimality and accuracy with no nonphysical diffusion
of our method over the popular upwind DG approaches.

The above offline-online procedure can also be seen as a new model reduction
(also known as reduced-order modeling) approach. Typical projection-based model
reduction approaches [I8] [I9] begin with a finite, but large, dimensional approxi-
mation problem of dimension n, e.g., ). When n is very large (i.e. for large-scale
problems), the discrete problem (@) is intractable for real-time simulation, inverse
problems, optimal control, uncertainty quantification, etc. [18,20]. The idea behind
model reduction is to seek a subspace

UZT:{ghi:lw“?nT}CUg’ ny L mn,
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where the basis functions &;,i = 1,...,n, typically have global support. The dis-
crete problem () is now solved for the pair {U;'", V' } instead of {U}}, V;'}, which
is much cheaper since it has only n,, < n unknowns. Clearly, one has to address the
well-posedness of the reduced problem and its accuracy. Compared to the existing
model reduction techniques, our reduction technique is more expensive in the offline
stage. In the online stage, the cost of constructing an approximate solution is more
or less similar, namely, O (n). However, the distinct feature of our method is that
it is a “direct model reduction” technique. That is, it does not require to construct
the reduced spaces U;'" and V,'". Moreover, the well-posedness of our direct model
reduction method is trivial with M}, = v, = 1 by Lemma [Z8 and our “reduced”
solution u} is the best in the space U} due to Corollary [ In addition, we always
have guaranteed optimal hp-convergence result for the reduced solution u}, as we
shall show momentarily.

Another important feature of our approximation is worth pointing out. That is,
the test basis vectors computed from ([24]) or (20) are continuous across elements
while the trial basis is completely discontinuous, implying discontinuous solution u
in general. Thus, our approximation method can be considered as a new discontin-
uous finite element method which is in between continuous finite element methods
[21] (in which both trial and test spaces are continuous), and the DG methods [22]
or the DPG methods [Il 2, 3] (in which both trial and test spaces are discontinu-
ous). It also has the flavor of the hybridized discontinuous Galerkin method [23]
due to the present of the hybrid variable gq. For ease in writing, we will also call
our method a DPG method.

We next choose finite dimensional polynomial spaces and discuss the convergence
of the resulting discontinuous finite element method. To begin, we specify

ulg, €PP(KG), j=1,...,N%, }

Uh_{u_(u,Q)eU q‘eeppe(e)’ 6:1,...,N6d

We first recall the following useful result on polynomial approximation theory
[13], 14, 15, [16). For w € H*® (D), where D could be an element in the mesh (i.e.,
D = Kj) or its faces (i.e., D C 0Kj), there exists ITu € PP (D) such that

h20
2 2
(28) HU—HUHLz(D) SCPQS |u‘HS(D)7 5207

where 0 = min {p + 1, s}, and h = diam (D). Then, we have the following conver-
gence result whose proof is almost trivial.

Theorem 4.2. Suppose that u\Kj € H% (Kj),s; > %,j =1,...,N° and q|, €
H*:(e),e = 1,...,N°. Let the mesh be affine. Then, there exists a positive
constant C, independent of h; = diam (K;), h. = diam (e), p;, g, and u such that

Ne 20

" h2c7e
2 2 2
o=l <O | 55 iy + Do 5 laliee | ¢
j=1|P;" eNdKj,ec&), 1€

with pj,pe > 1, 0 < o; <min(p; +1,s;), and 0 < 0, < min (pe + 1, se¢).

Proof. The proof is obvious using the definition of the norm in ([22), the best ap-
proximation error in Corollary [Il and the approximation error (28]). (]
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5. NUMERICAL RESULTS

In this section, we present several numerical results to support our findings.
Since our first method coincides with a least squares DG described by Houston et
al. [I7], we refer the readers to this paper for extensive numerical results. We will
therefore show only numerical results for our DPG method described in Section [
Furthermore, since we are only interested in u}, which is independent of ¢;’, we will
ignore the computation of ¢;'.

5.1. One-dimensional example. We consider a one-dimensional example in
which the optimal test functions can be computed analytically. In particular, we
choose 2 = (0,1), 8 =1,u =0, g = arctan (—100), and the forcing function f to

be
100

f(x) = .
() 1+ 1002 (z — 1)*
Under these assumptions, the exact solution can be found as

u (x) = arctan [100 (z — 1)].

For one-dimensional problems, our mesh is simply given by 0 = 29 < z1 < ... <
zye = 1, and K; = (zj_1,7;),7 = 1,...,N°. Let us denote Fr,(r),r €I =
[—1,1] as a diffeomorphic map from the master element Z to K;. From (23,
the optimal test function is found by integrating from the outflow to the inflow
boundaries, i.e.,

z;
vg,:/ odr, j=1,...,N
[ve] =0, at z;_1 and z;.

If supp ¢ C K, and @ o F (r) = P, (1) is the mth order Legendre polynomial, then
we have,
1-r2 dP,

29 =Jg,—————— 0

( ) VP, (r) K; m (m T 1) dr m 7£ )
where Jg, is the Jacobian of the map F,. From (23]) and (29) we conclude that
vp,,(r) has local support since vp (_1) = vp, (1) = 0, in particular, supp vp () C
K;, Ym # 0. For m = 0, we obtain

0 in K;, i>j,
Vpy(r) = JKJ- (1—T) in Kj,
2Jk, in K;, i<j.

We have showed that most of the optimal test functions have locally compact
supports. This makes the evaluation of the right side of [27)) negligible. Moreover,
the mass matrix on the left side of (27)) becomes diagonal due to the orthogonality
of the Legendre polynomials. This makes our method extremely efficient in the
online stage since there is no need to invert any matrices to solve for u}, no matter
how fine the mesh is.

For the numerical results, we choose uniform order p for all elements. We will
compare our DPG method with the original upwind DG [24] 25]. In Figure [Il we
plot the DPG and DG solutions for various polynomial orders on a uniform mesh
with four elements. In the region with small solution gradient, both methods are
comparable. However, in the steep gradient region, the DPG solutions are less
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n
u,u h

FiGUureE 1. The DPG and DG solutions for various orders p =
1,2,3,4 with h = 0.25. The mesh has four elements.

oscillatory than the DG ones. As can also be seen, the DPG solutions have smaller
undershootings and overshootings. This is due to the fact that the DPG solutions
minimize the error in the energy norm (22), a component of which is the error in
the L? norm. Therefore, oscillations with big amplitude that have significant L?
norm are not allowed in the DPG solutions. The DG method, however, does not
have such a property.

Figure@ plots the L? error for h refinements in the log-log scale. We approximate
the convergence rate by least squares fitting the convergence curves with straight
lines. As can be observed, not only are the DPG solutions more accurate by an
order of magnitude, but also they have better convergence rates.

Figure [B] shows the L? error for p refinements in the linear-log scale. Both DPG
and DG exhibits exponential convergence rate, which is consistent with Theorem
B4l Again, for the same polynomial order and number of unknowns, the DPG
method is more accurate than the DG method.
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FIGURE 2. h-convergence rate: 2(a) Log-log scale plot of the error
of our DPG method in the L?-norm, i.e., |ju — uZHLQ(Qh); 2(b) Log-
log scale plot of the error of the nodal DG method in the L2-norm.
The mesh is refined in h for different polynomial orders from p = 1

to p = 5. The convergence is shown for four different mesh sizes,
h ={0.43,0.22,0.11,0.054}.
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FIGURE 3. p convergence: 3(a) Linear-log scale plot of the error
of our DPG method in the L?-norm, i.e., ||u—uZ||L2(Qh); 3(b)
Linear-log scale plot of the error of the nodal DG method in the
L?-norm. The mesh is refined in p, and the convergence is shown
for four different mesh sizes, h € {0.016,0.0078,0.0039, 0.002}.
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5.2. Two-dimensional examples. For the first example, we choose 2 = (-1, 1)2,
B =(0.8,0.6), u = 0, and the forcing

f= %(1—1—1/) [1+y+15(1+x) cos <7r(1+x)(1+y)2/8),
so that the exact solution is
u=1+sin (77(1+x)(1—|—y)2/8).

The boundary condition is simply the restriction of the exact solution on the inflow
boundaries
1 y=0,-1<2<1,
g_{ 1 2=0-1<y<l.

For this problem, even though it may be still possible to compute the optimal
test functions exactly, a more general and practical approach is to solve for them
approximately. In particular, we choose to approximate the optimal test functions
using the following finite dimensional test subspace

VAP = {v eV vy, € PPitAr; j = 1,...,N°1} cV.

Clearly, VhAp asymptotically approaches V' as Ap; — oo, owing to the density of the
space of polynomials. We now solve (25]) for v, by marching along the streamtube
starting from K to the inflow boundary I' using the original DG method [24} 25],
which seems to be natural for this problem. Figuredlshows two streamtubes starting
from two different elements (black) to the inflow boundary I'. Clearly, the support of
a streamtube, and hence the corresponding optimal test functions, can be significant
if the mesh does not align with the streamlines. Alternatively, instead of carrying
out the computation on the whole streamtube, one can make further approximation
by creating a line of elements starting from K; to I', and this issue will be addressed
in our future work [26].

FIGURE 4. Two streamtubes starting from two different elements
(black) to the inflow boundary T'.

Once the optimal test functions v, are computed, the computation of the ap-
proximate solution u on each element via (27)) is then followed by inverting the local
mass matrix. Figure [Al presents the h-convergence of the DPG solution for various
values of the enriched exponent Ap; = {0,1,2,3} with p; =4, j =1,...,N°. As
can be observed, Ap; = 0 is the least accurate choice, and the accuracy does not
seem to increase for Ap; greater than unity. For this reason, Ap; = 1 will be used
from here to the rest of this section.
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FIGURE 5. The DPG solutions for various values of the enriched
exponent Ap; = {0,1,2,3} withp; =4, j =1,...,N°.

Figure [0l shows that the convergence rate of the DPG method is optimal in A
and exponential in p.

We next consider a more “challenging” problem in [2] on Peterson’s meshes [27].
For this problem, we specify Q2 = (0,1)%, 8 = (0,1), u = 0, f = 0, and the inflow
boundary condition as

g=u(z,0)=sin(6x), z€(0,1),

so that the exact solution is u(z,y) = sin(6z). In Figure [0 we compare the
h-convergence rate of the DPG method with that of the upwind DG method [24] [25].
The DPG method delivers optimal convergence rates for all polynomial orders while
the DG method has sharp sub-optimality. The sub-optimality of the DG method
is well known [27], and the numerical result in Figure 7(b) interestingly indicates
that it seems to happen only for polynomial orders below three. As can also be
observed, the DPG is more accurate than the DG for all h- and p-cases, and this is
a direct consequence of the best approximation property in Corollary [
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Since the DPG method can be considered as a least-squares method in the dual
space V' [2], we would like to study its diffusion property numerically. To this
end, the next example is extracted from [I7], in particular, Q = (0,2) x (0,1),
B = (1+sin(my/2),2), p =0, f =0, and the inflow boundary condition

1 r=0,0<y<1,
g=2< sin®(rz) 0<z<1,y=0,
0 1<2x<2,y=0,

for which the exact solution can be found using the method of characteristics.
Figure [ compares the solutions using the least-squares DG method in Section [3]
the upwind DG, and the DPG in Section @l The computational mesh is shown in
Figure 8(a), and the solution order p = 1 is chosen uniformly for all elements Kj,
j=1,...,N¢. The results show that the least-squares DG is overly diffusive, the
DG is less diffusive, and the DPG has the least diffusion. In addition, the DPG
method is the most accurate one. It therefore indicates that while standard least-
squares methods in primal spaces are very diffusive, those in dual spaces evidently
do not seem to be the case. To further confirm this, we consider the following
simple example [2] in which we specify Q = (0, 1)2, B8=10,1),u=0, f=0, and
the inflow boundary condition as

g=u(r,0)=2% 2¢c(0,1).

The p = 0 solutions using the upwind DG and the DPG methods are shown in Fig-
ure @ Clearly, the DPG solution does not seem to have any noticeable cross-wind
diffusion (i.e., the colors do not diffuse horizontally along the y-direction), whereas
the upwind DG solution does. This reflects the fact that while most of numeri-
cal methods for hyperbolic equations introduce numerical diffusion either explicitly
or implicitly (e.g., through the numerical fluxes as in many DG methods) to gain
stability, and hence introduce nonphysical diffusion, the DPG stability comes di-
rectly from the functional setting through the Banach-Necas-Babuska theorem on
the infinite dimensional level.

We have solved for the optimal test functions in the subspace VhAp C V rather
than V. Therefore, the inherited well-posedness with the optimal error estimate of
the finite dimensional approximation problem does not generally hold, even though
our numerical results show that it is in fact the case. Fortunately, a recent work
[28] shows that the inheritance is still guaranteed under some suitable conditions
for Laplace and linear elasticity equations. A similar result for our DPG method is
a subject of our future work.

We emphasize again that our DPG method does not require any equation solves
on the online stage if orthogonal polynomials or mass lumpings (e.g. collocation on
Legendre-Gauss-Lobatto nodes) are used, and hence (partially) compensating for
the cost of computing the optimal test functions. Work is in progress to minimize
the test function supports in two- and three-dimensional problems [26]. We should
mention that streamline meshes [29] may be an effective option in reducing the cost
and complexity of the offline stage, since one only needs to solve for the optimal
test basis functions along predefined streamtubes, accordingly. Streamline meshes
also imply that the support of any optimal test basis function is confined inside a
streamtube, allowing us to evaluate the right side of ([21)) only along streamtubes,
and hence making the online stage even faster.
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(a) Computational mesh

== = Least—squares DG SN
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(b) Least-squares DG solution

(¢) Upwind DG solution

(d) DPG solution

FIGURE 8. Solution at the outflow with p; = 1,7 =1,..., N on
0 <0< 2y =1: 8(a) The mesh; 8(b) The least-squares DPG
method in Section B} 8(c) Upwind DG method; 8(d) The DPG

method. Solid lines are the exact solution, and numerical solutions

are dashed lines.

(a) p =0 DG solution

(b) p = 0 DPG solution

FIGURE 9. Numerical solutions with p; = 0,5 = 1,..., N°: 9(a)
p = 0 DG solution; 9(b) p = 0 DPG solution.
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6. CONCLUSIONS

We have developed a single-framework theory that adapts to the problems at
hand, while automatically generating accurate finite element methods with trivial
and guaranteed stability. The theory is devised for general variational problems
that can be written in terms of bilinear and linear forms. We therefore expect that
it can be applied to a wide range of partial differential equations. Nevertheless, due
to space limitations, we present applications of the theory only to linear hyperbolic
equations; additional applications are forthcoming. We have shown that our theory
constructively leads to two different hp finite element methods, namely, an existing
least squares discontinuous Galerkin method and a new discontinuous finite element
method. We have analyzed the consistency, stability, and hp-convergence of these
methods in detail. These analytical results are supported by numerical results
which show that we have indeed obtained well-posed hp finite element methods with
optimal convergence rates in the natural energy norms. Moreover, the numerical
results show that our new discontinuous finite element method, namely the DPG
method, is more accurate and does not seem to have nonphysical diffusion compared
to the upwind discontinuous Galerkin method.
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