Remote Access Mathematics of Computation
Green Open Access

Mathematics of Computation

ISSN 1088-6842(online) ISSN 0025-5718(print)

 
 

 

Computational aspects of Cui-Freeden statistics for equidistribution on the sphere


Authors: Christine Choirat and Raffaello Seri
Journal: Math. Comp. 82 (2013), 2137-2156
MSC (2010): Primary 33C55, 60F05, 62E20; Secondary 86-08, 86A32, 11K45
DOI: https://doi.org/10.1090/S0025-5718-2013-02698-1
Published electronically: April 29, 2013
MathSciNet review: 3073194
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: In this paper, we derive the asymptotic statistical properties of a class of generalized discrepancies introduced by Cui and Freeden (SIAM J. Sci. Comput., 1997) to test equidistribution on the sphere. We show that they have highly desirable properties and encompass several statistics already proposed in the literature. In particular, it turns out that the limiting distribution is an (infinite) weighted sum of chi-squared random variables. Issues concerning the approximation of this distribution are considered in detail and explicit bounds for the approximation error are given. The statistics are then applied to assess the equidistribution of Hammersley low discrepancy sequences on the sphere and the uniformity of a dataset concerning magnetic orientations.


References [Enhancements On Off] (What's this?)

  • 1. I.B. Alberink and V. Bentkus, Berry-Esseen bounds for von Mises and $ U$-statistics, Liet. Mat. Rink. 41 (2001), no. 1, 1-20. MR 1849804 (2002f:60036)
  • 2. B. Bajnok, S.B. Damelin, J. Li, and G.L. Mullen, A constructive finite field method for scattering points on the surface of $ d$-dimensional spheres, Computing 68 (2002), no. 2, 97-109. MR 1901138 (2003h:11086)
  • 3. V. Bentkus and F. Götze, Optimal bounds in non-Gaussian limit theorems for $ U$-statistics, Ann. Probab. 27 (1999), no. 1, 454-521. MR 1681161 (2000f:62032)
  • 4. R.J. Beran, Testing for uniformity on a compact homogeneous space, J. Appl. Probability 5 (1968), 177-195. MR 0228098 (37:3682)
  • 5. J.S. Brauchart, Points on an unit sphere in $ {R}^{d+1}$, Riesz energy, discrepancy and numerical integration, Ph.D. thesis, Graz University of Technology (TU-Graz), 2005.
  • 6. M.J. Buckley and G.K. Eagleson, An approximation to the distribution of quadratic forms in normal random variables, Aust. J. Stat. 30A (1988), no. Spec. Issue, 150-159.
  • 7. C. Choirat and R. Seri, The asymptotic distribution of quadratic discrepancies, Monte Carlo and quasi-Monte Carlo methods 2004 (Berlin), Springer, 2006, pp. 61-76. MR 2208702 (2006k:65006)
  • 8. -, Statistical properties of generalized discrepancies, Math. Comp. 77 (2008), no. 261, 421-446 (electronic). MR 2353960 (2009c:62028)
  • 9. -, Numerical properties of generalized discrepancies on spheres of arbitrary dimension, J. Complexity 29 (2013), no. 2, 216-235. MR 3018140
  • 10. J. Cui and W. Freeden, Equidistribution on the sphere, SIAM J. Sci. Comput. 18 (1997), no. 2, 595-609. MR 1433797 (97k:65024)
  • 11. S.B. Damelin, A walk through energy, discrepancy, numerical integration and group invariant measures on measurable subsets of Euclidean space, Numer. Algorithms 48 (2008), no. 1-3, 213-235. MR 2413284 (2009d:41002)
  • 12. S.B. Damelin and P.J. Grabner, Energy functionals, numerical integration and asymptotic equidistribution on the sphere, J. Complexity 19 (2003), no. 3, 231-246. MR 1984111 (2004e:41032)
  • 13. S.B. Damelin, F.J. Hickernell, D.L. Ragozin, and X. Zeng, On energy, discrepancy and group invariant measures on measurable subsets of Euclidean space, J. Fourier Anal. Appl. 16 (2010), no. 6, 813-839. MR 2737760 (2011k:49099)
  • 14. R.B. Davies, Numerical inversion of a characteristic function, Biometrika 60 (1973), 415-417. MR 0321152 (47:9685)
  • 15. -, Statistical algorithms: Algorithm AS 155: The distribution of a linear combination of $ \chi ^2$ random variables, Applied Statistics 29 (1980), no. 3, 323-333.
  • 16. M. Engliš and J. Peetre, Green's functions for powers of the invariant Laplacian, Canad. J. Math. 50 (1998), no. 1, 40-73. MR 1618718 (99c:58146)
  • 17. K.-T. Fang and Y. Wang, Number-theoretic methods in statistics, Monographs on Statistics and Applied Probability, vol. 51, Chapman & Hall, London, 1994. MR 1284470 (95g:65189)
  • 18. N.I. Fisher, T. Lewis, and B.J.J. Embleton, Statistical analysis of spherical data, Cambridge University Press, Cambridge, 1993. MR 1247695 (94h:62001)
  • 19. J. Fliege and U. Maier, The distribution of points on the sphere and corresponding cubature formulae, IMA J. Numer. Anal. 19 (1999), no. 2, 317-334. MR 1686006
  • 20. W. Freeden and M. Schreiner, Spherical functions of mathematical geosciences. A scalar, vectorial, and tensorial setup, Advances in Geophysical and Environmental Mechanics and Mathematics. Berlin: Springer. xv, 602 p., 2009.
  • 21. E. Giné, Invariant tests for uniformity on compact Riemannian manifolds based on Sobolev norms, Ann. Statist. 3 (1975), no. 6, 1243-1266. MR 0388663 (52:9499)
  • 22. I.S. Gradshteyn and I.M. Ryzhik, Table of integrals, series, and products, fifth ed., Academic Press Inc., San Diego, CA, 1996, CD-ROM version 1.0 for PC, MAC, and UNIX computers. MR 1398882 (97c:00014)
  • 23. G.G. Gregory, Large sample theory for $ U$-statistics and tests of fit, Ann. Statist. 5 (1977), no. 1, 110-123. MR 0433669 (55:6642)
  • 24. J. Gustavsson, Some sums of Legendre and Jacobi polynomials, Math. Bohem. 126 (2001), no. 1, 141-149. MR 1826477 (2002g:33011)
  • 25. F.J. Hickernell, A generalized discrepancy and quadrature error bound, Math. Comp. 67 (1998), no. 221, 299-322. MR 1433265 (98c:65032)
  • 26. R.J. Hinde, Constructing atom-molecule potential surfaces from ab initio data: a method combining quadrature and interpolation, Comput. Phys. Commun. 130 (2000), no. 1, 1-11.
  • 27. J.P. Imhof, Computing the distribution of quadratic forms in normal variables, Biometrika 48 (1961), 419-426. MR 0137199 (25:655)
  • 28. W.B. Jordan, A sum of Legendre polynomials: Problem 83-20 (in Solutions), SIAM Review 26 (1984), no. 4, 586-587.
  • 29. A. Katanforoush and M. Shahshahani, Distributing points on the sphere. I, Experiment. Math. 12 (2003), no. 2, 199-209. MR 2016706 (2004m:52056)
  • 30. A.B.J. Kuijlaars and E.B. Saff, Asymptotics for minimal discrete energy on the sphere, Trans. Amer. Math. Soc. 350 (1998), no. 2, 523-538. MR 1458327 (98e:11092)
  • 31. H. Leeb, Asymptotic properties of the spectral test, diaphony, and related quantities, Math. Comp. 71 (2002), no. 237, 297-309 (electronic). MR 1863001 (2002j:11086)
  • 32. H. Niederreiter, Random number generation and quasi-Monte Carlo methods, CBMS-NSF Regional Conference Series in Applied Mathematics, vol. 63, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 1992. MR 1172997 (93h:65008)
  • 33. M.J. Prentice, On invariant tests of uniformity for directions and orientations, Ann. Statist. 6 (1978), no. 1, 169-176. MR 0458721 (56:16921)
  • 34. -, Correction to: ``On invariant tests of uniformity for directions and orientations'' [Ann. Statist. 6 (1978), no. 1, 169-176;], Ann. Statist. 7 (1979), no. 4, 926. MR 532258 (80k:62078)
  • 35. W.H. Press, S.A. Teukolsky, W.T. Vetterling, and B.P. Flannery, Numerical recipes in C++, Cambridge University Press, Cambridge, 2002. MR 1880993 (2003a:65005)
  • 36. J.-R. Pycke, A decomposition for invariant tests of uniformity on the sphere, Proc. Amer. Math. Soc. 135 (2007), no. 9, 2983-2993 (electronic). MR 2317977 (2008i:62058)
  • 37. -, $ U$-statistics based on the Green's function of the Laplacian on the circle and the sphere, Statist. Probab. Lett. 77 (2007), no. 9, 863-872. MR 2363436 (2009b:62094)
  • 38. S.O. Rice, Distribution of quadratic forms in normal random variables--evaluation by numerical integration, SIAM J. Sci. Statist. Comput. 1 (1980), no. 4, 438-448. MR 610756 (82g:62037)
  • 39. M. Schreiner, On a new condition for strictly positive definite functions on spheres, Proc. Amer. Math. Soc. 125 (1997), no. 2, 531-539. MR 1353398 (97d:43005)
  • 40. R.J. Serfling, Approximation theorems of mathematical statistics, John Wiley & Sons Inc., New York, 1980. MR 595165 (82a:62003)
  • 41. J. Sheil and I. O'Muircheartaigh, Statistical algorithms: Algorithm AS 106: The distribution of non-negative quadratic forms in normal variables, Applied Statistics 26 (1977), no. 1, 92-98.
  • 42. G.R. Shorack, Probability for statisticians, Springer Texts in Statistics, Springer-Verlag, New York, 2000. MR 1762415 (2001d:60002)
  • 43. I.H. Sloan and R.S. Womersley, Extremal systems of points and numerical integration on the sphere, Adv. Comput. Math. 21 (2004), no. 1-2, 107-125. MR 2065291 (2005b:65024)
  • 44. A.W. van der Vaart, Asymptotic statistics, Cambridge Series in Statistical and Probabilistic Mathematics, vol. 3, Cambridge University Press, Cambridge, 1998. MR 1652247 (2000c:62003)
  • 45. T.T. Wong, W.S. Luk, and P.A. Heng, Sampling with Hammersley and Halton points, Journal of Graphics Tools 2 (1997), no. 2, 9-24.
  • 46. J.-T. Zhang, Approximate and asymptotic distributions of chi-squared-type mixtures with applications, J. Amer. Statist. Assoc. 100 (2005), no. 469, 273-285. MR 2156837 (2006d:62050)

Similar Articles

Retrieve articles in Mathematics of Computation with MSC (2010): 33C55, 60F05, 62E20, 86-08, 86A32, 11K45

Retrieve articles in all journals with MSC (2010): 33C55, 60F05, 62E20, 86-08, 86A32, 11K45


Additional Information

Christine Choirat
Affiliation: Department of Economics, School of Economics and Business Administration, Universidad de Navarra, Edificio Amigos, 31080 Pamplona, Spain
Email: cchoirat@unav.es

Raffaello Seri
Affiliation: Dipartimento di Economia, Università degli Studi dell’Insubria, Via Monte Generoso 71, 21100 Varese, Italy
Email: raffaello.seri@uninsubria.it

DOI: https://doi.org/10.1090/S0025-5718-2013-02698-1
Keywords: Sphere, generalized discrepancy, equidistribution, approximation of distributions, quadratic forms in Gaussian random variables, low discrepancy (quasi-Monte Carlo) method
Received by editor(s): October 30, 2010
Received by editor(s) in revised form: February 9, 2012
Published electronically: April 29, 2013
Article copyright: © Copyright 2013 American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.

American Mathematical Society