Skip to Main Content

Mathematics of Computation

Published by the American Mathematical Society since 1960 (published as Mathematical Tables and other Aids to Computation 1943-1959), Mathematics of Computation is devoted to research articles of the highest quality in computational mathematics.

ISSN 1088-6842 (online) ISSN 0025-5718 (print)

The 2020 MCQ for Mathematics of Computation is 1.78.

What is MCQ? The Mathematical Citation Quotient (MCQ) measures journal impact by looking at citations over a five-year period. Subscribers to MathSciNet may click through for more detailed information.

 

A fast algorithm for approximating the ground state energy on a quantum computer
HTML articles powered by AMS MathViewer

by A. Papageorgiou, I. Petras, J. F. Traub and C. Zhang PDF
Math. Comp. 82 (2013), 2293-2304 Request permission

Abstract:

Estimating the ground state energy of a multiparticle system with relative error $\varepsilon$ using deterministic classical algorithms has cost that grows exponentially with the number of particles. The problem depends on a number of state variables $d$ that is proportional to the number of particles and suffers from the curse of dimensionality. Quantum computers can vanquish this curse. In particular, we study a ground state eigenvalue problem and exhibit a quantum algorithm that achieves relative error $\varepsilon$ using a number of qubits $C^\prime d\log \varepsilon ^{-1}$ with total cost (number of queries plus other quantum operations) $Cd\varepsilon ^{-(3+\delta )}$, where $\delta >0$ is arbitrarily small and $C$ and $C^\prime$ are independent of $d$ and $\varepsilon$.
References
  • D. S. Abrams and S. Lloyd, Quantum algorithm providing exponential speed increase for finding eigenvalues and eigenvectors. Phys. Rev. Lett., 83:5162–5165, 1999.
  • Charles H. Bennett, Ethan Bernstein, Gilles Brassard, and Umesh Vazirani, Strengths and weaknesses of quantum computing, SIAM J. Comput. 26 (1997), no. 5, 1510–1523. MR 1471991, DOI 10.1137/S0097539796300933
  • Gilles Brassard, Peter Høyer, Michele Mosca, and Alain Tapp, Quantum amplitude amplification and estimation, Quantum computation and information (Washington, DC, 2000) Contemp. Math., vol. 305, Amer. Math. Soc., Providence, RI, 2002, pp. 53–74. MR 1947332, DOI 10.1090/conm/305/05215
  • Sergey Bravyi, David DiVincenzo, and Daniel Loss, Polynomial-time algorithm for simulation of weakly interacting quantum spin systems, Comm. Math. Phys. 284 (2008), no. 2, 481–507. MR 2448138, DOI 10.1007/s00220-008-0574-6
  • C. Le Bris (ed.), Handbook of numerical analysis. Vol. X, Handbook of Numerical Analysis, X, North-Holland, Amsterdam, 2003. Special volume: computational chemistry. MR 2008385
  • C. R. Clark, T. S. Metodi, S. D. Gasster, and K. R. Brown, Resource requirements for fault-tolerant quantum simulation: The ground state of the transverse Ising model. Phys. Rev. A, 79:062314, 2009.
  • James W. Demmel, Applied numerical linear algebra, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 1997. MR 1463942, DOI 10.1137/1.9781611971446
  • J. Du, N. Xu, X. Peng, P. Wang, S. Wu, and D. Lu, NMR implementation of a molecular hydrogen quantum simulation with adiabatic state preparation. Phys. Rev. Lett., 104:030502, 2010.
  • George E. Forsythe and Wolfgang R. Wasow, Finite-difference methods for partial differential equations, Dover Phoenix Editions, Dover Publications, Inc., Mineola, NY, 2004. Reprint of the 1960 original. MR 2360350
  • H. Häffner, C. F. Roos, and R. Blatt, Quantum computing with trapped ions, Phys. Rep. 469 (2008), no. 4, 155–203. MR 2475413, DOI 10.1016/j.physrep.2008.09.003
  • A. Hams and H. DeRaedt, Fast algorithm for finding the eigenvalue distribution of very large matrices. Phys. Rev. E, 62(3):4365–4377, 2000.
  • P. Jaksch and A. Papageorgiou, Eigenvector approximation leading to exponential speedup of quantum eigenvalue estimation. Phys. Rev. Lett., 91:257902, 2003.
  • I. Kassal, S. P. Jordan, P. J. Love, M. Mohseni, and A. Aspuru-Guzik, Polynomial-time quantum algorithm for the simulation of chemical dynamics. PNAS, 105:18681–18686, 2008.
  • I. Kassal, J. D. Witfield, A. Perdomo-Ortiz, Man-Hong Yung, and A. Aspuru-Guzik, Quantum information and computation for chemistry. An. Rev. Phys. Chem., 62:185–207, 2011. http://arxiv.org/abs/1007.2648.
  • Julia Kempe, Alexei Kitaev, and Oded Regev, The complexity of the local Hamiltonian problem, SIAM J. Comput. 35 (2006), no. 5, 1070–1097. MR 2217138, DOI 10.1137/S0097539704445226
  • A. Klappenecker and M. Rötteler, Discrete cosine transforms on quantum computers, 2001. http://arXiv.org/quant-ph/0111038.
  • B. P. Lanyon, J. D. Whitfield, G. G. Gillett, M. E. Goggin, M. P. Almeida, I. Kassal, J. D. Biamonte, M. Mohseni, B. J. Powell, M. Barbieri, A. Aspuru-Guzik, and A. G. White, Towards quantum chemistry on a quantum computer. Nature Chemistry, 2:106–111, 2010.
  • Randall J. LeVeque, Finite difference methods for ordinary and partial differential equations, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 2007. Steady-state and time-dependent problems. MR 2378550, DOI 10.1137/1.9780898717839
  • Christian Lubich, From quantum to classical molecular dynamics: reduced models and numerical analysis, Zurich Lectures in Advanced Mathematics, European Mathematical Society (EMS), Zürich, 2008. MR 2474331, DOI 10.4171/067
  • Michael A. Nielsen and Isaac L. Chuang, Quantum computation and quantum information, Cambridge University Press, Cambridge, 2000. MR 1796805
  • Erich Novak, Quantum complexity of integration, J. Complexity 17 (2001), no. 1, 2–16. MR 1817606, DOI 10.1006/jcom.2000.0566
  • Erich Novak, Ian H. Sloan, and Henryk Woźniakowski, Tractability of approximation for weighted Korobov spaces on classical and quantum computers, Found. Comput. Math. 4 (2004), no. 2, 121–156. MR 2049868, DOI 10.1007/s10208-002-0074-6
  • S. Oh, Quantum computational method of finding the ground-state energy and expectation values. Phys. Rev. A, 77:012326, 2008.
  • A. Papageorgiou, On the complexity of the multivariate Sturm-Liouville eigenvalue problem, J. Complexity 23 (2007), no. 4-6, 802–827. MR 2371994, DOI 10.1016/j.jco.2007.03.002
  • A. Papageorgiou and C. Zhang, On the efficiency of quantum algorithms for Hamiltonian simulation. Quantum Information Processing, 11(2):541–561, 2012. DOI: http://dx.doi.org/10.1007/s11128-011-0263-9.
  • Masuo Suzuki, Fractal decomposition of exponential operators with applications to many-body theories and Monte Carlo simulations, Phys. Lett. A 146 (1990), no. 6, 319–323. MR 1059400, DOI 10.1016/0375-9601(90)90962-N
  • Masuo Suzuki, General theory of fractal path integrals with applications to many-body theories and statistical physics, J. Math. Phys. 32 (1991), no. 2, 400–407. MR 1088360, DOI 10.1063/1.529425
  • T. Szkopek, V. Roychowdhury, E. Yablonovitch, and D. S. Abrams, Eigenvalue estimation of differential operators with a quantum algorithm. Phys. Rev. A, 72:062318, 2005.
  • J. F. Traub and H. Woźniakowski, Path integration on a quantum computer, Quantum Inf. Process. 1 (2002), no. 5, 365–388 (2003). MR 1987457, DOI 10.1023/A:1023417813916
  • P. Varga and B. Apagyi, Phase estimation procedure to solve quantum-mechanical eigenvalue problems. Phys. Rev. A, 78:022337, 2008.
  • H. Wang, S. Ashhab, and F. Nori, Efficient quantum algorithm for preparing molecular-system-like states on a quantum computer. Phys. Rev. A, 79:042335, 2009.
  • H. Wang, S. Kais, A. Aspuru-Guzik, and M. R. Hoffmann, Quantum algorithm for obtaining the energy spectrum of molecular systems. Phys. Chem. Chem. Phys., 10:5388–5393, 2008.
  • H. F. Weinberger, Upper and lower bounds for eigenvalues by finite difference methods, Comm. Pure Appl. Math. 9 (1956), 613–623. MR 84185, DOI 10.1002/cpa.3160090329
  • H. F. Weinberger, Lower bounds for higher eigenvalues by finite difference methods, Pacific J. Math. 8 (1958), 339–368; erratum, 941. MR 107372
  • Mladen Victor Wickerhauser, Adapted wavelet analysis from theory to software, A K Peters, Ltd., Wellesley, MA, 1994. With a separately available computer disk (IBM-PC or Macintosh). MR 1299983
  • J. H. Wilkinson, The algebraic eigenvalue problem, Clarendon Press, Oxford, 1965. MR 0184422
Similar Articles
  • Retrieve articles in Mathematics of Computation with MSC (2010): 65D15, 81-08
  • Retrieve articles in all journals with MSC (2010): 65D15, 81-08
Additional Information
  • A. Papageorgiou
  • Affiliation: Department of Computer Science, Columbia University, New York, New York 10027
  • Email: ap@cs.columbia.edu
  • I. Petras
  • Affiliation: Department of Computer Science, Columbia University, New York, New York 10027
  • Email: ipetras@cs.columbia.edu
  • J. F. Traub
  • Affiliation: Department of Computer Science, Columbia University, New York, New York 10027
  • Email: traub@cs.columbia.edu
  • C. Zhang
  • Affiliation: Department of Computer Science, Columbia University, New York, New York 10027
  • Email: czhang@cs.columbia.edu
  • Received by editor(s): May 28, 2011
  • Received by editor(s) in revised form: February 17, 2012
  • Published electronically: May 16, 2013
  • Additional Notes: This work has been supported in part by the National Science Foundation
  • © Copyright 2013 American Mathematical Society
  • Journal: Math. Comp. 82 (2013), 2293-2304
  • MSC (2010): Primary 65D15, 81-08
  • DOI: https://doi.org/10.1090/S0025-5718-2013-02714-7
  • MathSciNet review: 3073201