Remote Access Mathematics of Computation
Green Open Access

Mathematics of Computation

ISSN 1088-6842(online) ISSN 0025-5718(print)



Computing Igusa class polynomials

Author: Marco Streng
Journal: Math. Comp. 83 (2014), 275-309
MSC (2010): Primary 11G15; Secondary 14K22, 11Y40
Published electronically: May 20, 2013
MathSciNet review: 3120590
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We bound the running time of an algorithm that computes the genus-two class polynomials of a primitive quartic CM-field $ K$. This is in fact the first running time bound and even the first proof of correctness of any algorithm that computes these polynomials.

Essential to bounding the running time is our bound on the height of the polynomials, which is a combination of denominator bounds of Goren and Lauter and our own absolute value bounds. The absolute value bounds are obtained by combining Dupont's estimates of theta constants with an analysis of the shape of CM period lattices (Section 8).

The algorithm is basically the complex analytic method of Spallek and van Wamelen, and we show that it finishes in time $ \widetilde {O}(\Delta ^{7/2})$, where $ \Delta $ is the discriminant of $ K$. We give a complete running time analysis of all parts of the algorithm, and a proof of correctness including a rounding error analysis. We also provide various improvements along the way.

References [Enhancements On Off] (What's this?)

  • 1. Juliana Belding, Reinier Bröker, Andreas Enge, and Kristin Lauter.
    Computing Hilbert class polynomials.
    In Algorithmic Number Theory - ANTS-VIII (Banff, 2008), LNCS 5011, pages 282-295. Springer, 2008. MR 2467854 (2009j:11200)
  • 2. Daniel J. Bernstein.
    Fast multiplication and its applications.
    In J. Buhler and P. Stevenhagen, editors, Surveys in Algorithmic Number Theory, volume 44 of MSRI Publications, pages 325-384. Cambridge, 2008. MR 2467550 (2010a:68186)
  • 3. Christina Birkenhake and Herbert Lange.
    Complex abelian varieties, volume 302 of Grundlehren der mathematischen Wissenschaften.
    Springer, second edition, 2004. MR 2062673 (2005c:14001)
  • 4. Oskar Bolza.
    Darstellung der rationalen ganzen Invarianten der Binärform sechsten Grades durch die Nullwerthe der zugehörigen $ \vartheta $-Functionen.
    Math. Ann., 30(4):478-495, 1887. MR 1510458
  • 5. Jan Hendrik Bruinier and Tonghai Yang.
    CM-values of Hilbert modular functions.
    Invent. Math., 163(2):229-288, 2006. MR 2207018 (2008b:11053)
  • 6. Johannes Buchmann and Hendrik W. Lenstra, Jr.
    Approximating rings of integers in number fields.
    Journal de Théorie des Nombres de Bordeaux, 6:221-260, 1994. MR 1360644 (96m:11092)
  • 7. Gabriel Cardona and Jordi Quer.
    Field of moduli and field of definition for curves of genus 2.
    In Computational aspects of algebraic curves, volume 13 of Lecture Notes Ser. Comput., pages 71-83. World Scientific, 2005. MR 2181874 (2006h:14036)
  • 8. Robert Carls, David Kohel, and David Lubicz.
    Higher-dimensional 3-adic CM construction.
    J. Algebra, 319(3):971-1006, 2008. MR 2379090 (2010e:14042)
  • 9. Robert Carls and David Lubicz.
    A $ p$-adic quasi-quadratic time point counting algorithm.
    Int. Math. Res. Not. IMRN, (4):698-735, 2009. MR 2480098 (2010c:14020)
  • 10. Ehud de Shalit and Eyal Z. Goren.
    On special values of theta functions of genus two.
    Ann. Inst. Fourier (Grenoble), 47(3):775-799, 1997. MR 1465786 (98g:11071)
  • 11. Régis Dupont.
    Moyenne arithmético-géométrique, suites de Borchardt et applications.
    Ph.D. thesis, École Polytechnique, 2006.
  • 12. Régis Dupont.
    Fast evaluation of modular functions using Newton iterations and the AGM.
    Math. Comp., 80(275):1823-1847, 2011. MR 2785482 (2012f:65037)
  • 13. Friedrich Eisenbrand and Günter Rote.
    Fast reduction of ternary quadratic forms.
    In Cryptography and lattices (Providence), volume 2146 of Lecture Notes in Comput. Sci., pages 32-44. Springer, 2001. MR 1903885 (2003c:11076)
  • 14. Kirsten Eisenträger and Kristin Lauter.
    A CRT algorithm for constructing genus 2 curves over finite fields.
    In Arithmetic, Geometry and Coding Theory, AGCT-10 (Marseille, 2005). Société Mathématique de France, 2011.
  • 15. Andreas Enge.
    The complexity of class polynomial computation via floating point approximations.
    Math. Comp., 78(266):1089-1107, 2009. MR 2476572 (2010h:11097)
  • 16. Andreas Enge and François Morain.
    Fast decomposition of polynomials with known Galois group.
    In Applied algebra, algebraic algorithms and error-correcting codes (Toulouse), LNCS 2643, pages 254-264. Springer, 2003.
  • 17. Gerhard Frey and Tanja Lange.
    Complex multiplication.
    In H. Cohen, G. Frey, R. Avanzi, C. Doche, T. Lange, K. Nguyen, and F. Vercauteren, editors, Handbook of elliptic and hyperelliptic curve cryptography, pages 455-473. Chapman & Hall/CRC, 2006. MR 2162734
  • 18. Pierrick Gaudry, Thomas Houtmann, David Kohel, Christophe Ritzenthaler, and Annegret Weng.
    The 2-adic CM method for genus 2 curves with application to cryptography.
    In Advances in Cryptology - ASIACRYPT 2006, LNCS 4284, pages 114-129. Springer, 2006. MR 2444631 (2009j:94110)
  • 19. Eyal Z. Goren.
    On certain reduction problems concerning abelian surfaces.
    manuscripta mathematica, 94(1):33-43, 1997. MR 1468933 (98m:14048)
  • 20. Eyal Z. Goren and Kristin Lauter.
    Class invariants for quartic CM fields.
    Annales de l'Institut Fourier, 57(2):457-480, 2007. MR 2310947 (2008i:11075)
  • 21. Eyal Z. Goren and Kristin Lauter.
    Genus 2 curves with complex multiplication.
    Int. Math. Res. Notices, 2012(5):1068-1142, 2012.
  • 22. Erhard Gottschling.
    Explizite Bestimmung der Randflächen des Fundamentalbereiches der Modulgruppe zweiten Grades.
    Math. Annalen, 138:103-124, 1959. MR 0107020 (21:5748)
  • 23. Erich Hecke.
    Vorlesungen über die Theorie der algebraischen Zahlen.
    Chelsea Publishing Co., 1970.
    Second edition of the 1923 original. MR 0352036 (50:4524)
  • 24. Jun-Ichi Igusa.
    Arithmetic variety of moduli for genus two.
    Annals of Mathematics, 72(3):612-649, 1960. MR 0114819 (22:5637)
  • 25. Jun-Ichi Igusa.
    On Siegel modular forms of genus two.
    Amer. J. Math., 84(1):175-200, 1962. MR 0141643 (25:5040)
  • 26. Jun-Ichi Igusa.
    Modular forms and projective invariants.
    Amer. J. Math., 89(3):817-855, 1967. MR 0229643 (37:5217)
  • 27. Peter Kirrinnis.
    Partial fraction decompostion in $ \mathbb{C}(z)$ and simultaneous Newton iteration for factorization in $ \mathbb{C}[z]$.
    J. Complexity, 14(3):378-444, 1998. MR 1646107 (2000e:65052)
  • 28. Helmut Klingen.
    Introductory lectures on Siegel modular forms, volume 20 of Cambridge Studies in Advanced Mathematics.
    Cambridge University Press, 1990. MR 1046630 (91a:11021)
  • 29. David Kohel et al.
    ECHIDNA algorithms for algebra and geometry experimentation., 2007.
  • 30. Hendrik W. Lenstra, Jr.
    In J. Buhler and P. Stevenhagen, editors, Surveys in Algorithmic Number Theory, volume 44 of MSRI Publications, pages 127-181. Cambridge, 2008. MR 2467546 (2010c:11156)
  • 31. Stéphane Louboutin.
    Explicit lower bounds for residues at $ s=1$ of Dedekind zeta functions and relative class numbers of CM-fields.
    Trans. Amer. Math. Soc., 355(8):3079-3098 (electronic), 2003. MR 1974676 (2004f:11134)
  • 32. Jean-François Mestre.
    Construction de courbes de genre $ 2$ à partir de leurs modules.
    In Effective methods in algebraic geometry (Castiglioncello, 1990), volume 94 of Progr. Math., pages 313-334, Birkhäuser, 1991. MR 1106431 (92g:14022)
  • 33. David Mumford.
    Tata lectures on theta II, volume 43 of Progress in Mathematics.
    Birkhäuser, 1984. MR 742776 (86b:14017)
  • 34. René Schoof.
    Computing Arakelov class groups.
    In J. Buhler and P. Stevenhagen, editors, Surveys in Algorithmic Number Theory, volume 44 of MSRI Publications, pages 447-495. Cambridge, 2008. MR 2467554 (2009k:11212)
  • 35. Goro Shimura and Yutaka Taniyama.
    Complex multiplication of abelian varieties and its applications to number theory, volume 6 of Publications of the Mathematical Society of Japan.
    1961. MR 0125113 (23:A2419)
  • 36. Anne-Monika Spallek.
    Kurven vom Geschlecht $ 2$ und ihre Anwendung in Public-Key-Kryptosystemen.
    Ph.D. thesis, Institut für Experimentelle Mathematik, Universität GH Essen, 1994.
  • 37. William Stein et al.
    Sage mathematics software 4.7.2, 2011.
  • 38. Marco Streng.
    Complex multiplication of abelian surfaces.
    Ph.D. thesis, Universiteit Leiden, 2010.
  • 39. Carl Johannes Thomae.
    Beitrag zur Bestimmung von $ \vartheta (0,\cdots ,0)$ durch die Klassenmoduln algebraischer Funktionen.
    J. Reine Angew. Math., 71:201-222, 1870.
  • 40. Paul van Wamelen.
    Examples of genus two CM curves defined over the rationals.
    Math. Comp., 68(225):307-320, 1999. MR 1609658 (99c:11079)
  • 41. Joachim von zur Gathen and Jürgen Gerhard.
    Modern computer algebra.
    Cambridge, second edition, 2003. MR 2001757 (2004g:68202)
  • 42. Lawrence C. Washington.
    Introduction to Cyclotomic Fields.
    GTM 83. Springer, 1982. MR 718674 (85g:11001)
  • 43. Heinrich Weber.
    Algebraische Zahlen, volume 3 of Lehrbuch der Algebra.
    Friedrich Vieweg, 1908.
  • 44. Annegret Weng.
    Constructing hyperelliptic curves of genus $ 2$ suitable for cryptography.
    Math. Comp., 72(241):435-458, 2002. MR 1933830 (2003i:14029)
  • 45. Tonghai Yang.
    Arithmetic intersection on a Hilbert modular surface and the Faltings height., 2007.

Similar Articles

Retrieve articles in Mathematics of Computation with MSC (2010): 11G15, 14K22, 11Y40

Retrieve articles in all journals with MSC (2010): 11G15, 14K22, 11Y40

Additional Information

Marco Streng
Affiliation: Department of Mathematics, VU University Amsterdam, De Boelelaan 1105, 1081 HV Amsterdam, The Netherlands

Received by editor(s): February 9, 2011
Received by editor(s) in revised form: January 23, 2012
Published electronically: May 20, 2013
Additional Notes: The results in this paper were part of the author’s Ph.D. thesis at Universiteit Leiden
The author was partially supported by EPSRC grant number EP/G004870/1
Article copyright: © Copyright 2013 American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.

American Mathematical Society