Remote Access Mathematics of Computation
Green Open Access

Mathematics of Computation

ISSN 1088-6842(online) ISSN 0025-5718(print)

 
 

 

Adaptive multiresolution discontinuous Galerkin schemes for conservation laws


Authors: Nune Hovhannisyan, Siegfried Müller and Roland Schäfer
Journal: Math. Comp. 83 (2014), 113-151
MSC (2010): Primary 35L65, 65M12, 65M60, 65T60, 74S05
DOI: https://doi.org/10.1090/S0025-5718-2013-02732-9
Published electronically: July 10, 2013
MathSciNet review: 3120584
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: A multiresolution-based adaptation concept is proposed that aims at accelerating discontinuous Galerkin schemes applied to non-linear hyperbolic conservation laws. Opposite to standard adaptation concepts no error estimates are needed to tag mesh elements for refinement. Instead of this, a multiresolution analysis is performed on a hierarchy of nested grids for the data given on a uniformly refined mesh. This provides difference information between successive refinement levels that may become negligibly small in regions where the solution is locally smooth. Applying hard thresholding the data are highly compressed and local grid adaptation is triggered by the remaining significant coefficients. A central mathematical problem addressed in this work is then to show at least for scalar one-dimensional problems that choosing an appropriate threshold value, the adaptive solution is of the same accuracy as the reference solution on a uniformly refined mesh. Numerical comparisons demonstrate the efficiency of the concept.


References [Enhancements On Off] (What's this?)

  • 1. S. Adjerid, K.D. Devine, J.E. Flaherty, and L. Krivodonova.
    A posteriori error estimation for discontinuous Galerkin solutions of hyperbolic problems.
    Comput. Methods Appl. Mech. Eng., 191:1097-1112, 2002. MR 1877682 (2002k:65137)
  • 2. B. Alpert.
    A class of bases in $ l^2$ for the sparse representation of integral operators.
    SIAM J. Math. Anal., 24:246-262, 1993. MR 1199538 (93k:65104)
  • 3. B. Alpert, G. Beylkin, D. Gines, and L. Vozovoi.
    Adaptive solution of partial differential equation in multiwavelet bases.
    J. Comp. Phys., 182:149 -190, 2002. MR 1936805 (2003i:65083)
  • 4. R.M. Beam and R.F. Warming.
    Multiresolution analysis and supercompact multiwavelets.
    SIAM J. Sci. Comput., 22(4):1238-1268, 2000. MR 1787295 (2001f:42056)
  • 5. K.S. Bey and J.T. Oden.
    $ hp$-version discontinuous Galerkin methods for hyperbolic conservation laws.
    Comput. Methods Appl. Mech. Eng., 133(3-4):259-286, 1996. MR 1399638 (97g:65225)
  • 6. F. Bramkamp, Ph. Lamby, and S. Müller.
    An adaptive multiscale finite volume solver for unsteady and steady state flow computations.
    J. Comp. Phys., 197(2):460-490, 2004. MR 2063903 (2005a:76106)
  • 7. K. Brix, R. Massjung, and A. Voss.
    Refinement and connectivity algorithms for adaptive discontinuous Galerkin methods.
    SIAM J. Sci. Comput., 33(1):66-101, 2011. MR 2783187 (2012g:65252)
  • 8. B. Cockburn.
    Quasimonotone schemes for scalar conservation laws: Part I.
    SIAM J. Numer. Anal., 26(6):1325-1341, 1989. MR 1025091 (91b:65106)
  • 9. B. Cockburn, S. Hou, and C.-W. Shu.
    The Runge-Kutta local projection discontinuous Galerkin finite element method for conservation laws. IV: The multidimensional case.
    Math. Comp., 54(190):545-581, 1990. MR 1010597 (90k:65162)
  • 10. B. Cockburn, G.E. Karniadakis, and C.-W. Shu.
    The development of discontinuous Galerkin methods.
    Cockburn, Bernardo (ed.) et al., Discontinuous Galerkin methods. Theory, computation and applications. 1st international symposium on DGM, Newport, RI, USA, May 24-26, 1999. Berlin: Springer. Lect. Notes Comput. Sci. Eng. 11, 3-50 (2000). MR 1842161 (2002e:65002)
  • 11. B. Cockburn, S.-Y. Lin, and C.-W. Shu.
    TVB Runge-Kutta local projection discontinuous Galerkin finite element method for conservation laws. III: One-dimensional systems.
    J. Comput. Phys., 84(1):90-113, 1989. MR 1015355 (90k:65161)
  • 12. B. Cockburn and C.-W. Shu.
    TVB Runge-Kutta local projection discontinuous Galerkin finite element method for conservation laws II: General framework.
    Math. Comp., 52(186):411-435, 1989. MR 983311 (90k:65160)
  • 13. B. Cockburn and C.-W. Shu.
    The Runge-Kutta local projection $ p\sp 1$-discontinuous-Galerkin finite element method for scalar conservation laws.
    RAIRO Modélisation Math. Anal. Numér., 25(3):337-361, 1991. MR 1103092 (92e:65128)
  • 14. B. Cockburn and C.-W. Shu.
    The Runge-Kutta discontinuous Galerkin method for conservation laws. V: Multidimensional systems.
    J. Comput. Phys., 141(2):199-224, 1998. MR 1619652 (99c:65181)
  • 15. B. Cockburn and C.-W. Shu.
    Runge-Kutta discontinuous Galerkin methods for convection-dominated problems.
    J. Sci. Computing, 16(3):173-261, 2001. MR 1873283 (2002i:65099)
  • 16. A. Cohen.
    Numerical analysis of wavelet methods, volume 32 of Studies in Mathematics and its Applications.
    North-Holland Publishing Co., Amsterdam, 2003. MR 1990555 (2004c:65178)
  • 17. A. Cohen, I. Daubechies, and J. Feauveau.
    Biorthogonal bases of compactly supported wavelets.
    Comm. Pure Appl. Math., 45:485-560, 1992. MR 1162365 (93e:42044)
  • 18. A. Cohen, S.M. Kaber, S. Müller, and M. Postel.
    Fully adaptive multiresolution finite volume schemes for conservation laws.
    Math. Comp., 72(241):183-225, 2003. MR 1933818 (2003k:65109)
  • 19. F. Coquel, Y. Maday, S. Müller, M. Postel, and Q.H. Tran.
    New trends in multiresolution and adaptive methods for convection-dominated problems.
    ESAIM, Proc., 29:1-7, 2009. MR 2766462 (2011i:65005)
  • 20. W. Dahmen, B. Gottschlich-Müller, and S. Müller.
    Multiresolution schemes for conservation laws.
    Numer. Math., 88(3):399-443, 2000. MR 1835465 (2002e:65116)
  • 21. A. Dedner, C. Makridakis, and M. Ohlberger.
    Error control for a class of Runge Kutta discontinuous Galerkin methods for nonlinear conservation laws.
    SIAM J. Numer. Anal., 45:514-538, 2007. MR 2300285 (2008d:65109)
  • 22. E. Godlewski and P.-A. Raviart.
    Hyperbolic systems of conservation laws, volume 3/4 of Mathématiques & Applications (Paris) [Mathematics and Applications].
    Ellipses, Paris, 1991. MR 1304494 (95i:65146)
  • 23. S. Gottlieb, C.-W. Shu, and E. Tadmor.
    Strong stability preserving high-order time discretization methods.
    SIAM Review, 43(1):89-112, 2001. MR 1854647 (2002f:65132)
  • 24. A. Harten.
    Multiresolution representation of data: A general framework.
    SIAM J. Numer. Anal., 33(3):1205-1256, 1996. MR 1393910 (97h:65078)
  • 25. R. Hartmann and P. Houston.
    Adaptive discontinuous Galerkin finite element methods for nonlinear hyperbolic conservation laws.
    SIAM J. Sci. Comput., 24:979-1004, 2002. MR 1950521 (2004b:65149)
  • 26. R. Hartmann and P. Houston.
    Adaptive discontinuous Galerkin finite element methods for the compressible Euler equations.
    J. Comp. Phys., 183:508-532, 2002. MR 1947780 (2003k:76084)
  • 27. P. Houston, B. Senior, and E. Süli.
    $ hp$-discontinuous Galerkin finite element methods for hyperbolic problems: Error analysis and adaptivity.
    Int. J. Numer. Methods Fluids, 40(1-2):153-169, 2002. MR 1928323 (2003g:65144)
  • 28. N. Hovhannisyan and S. Müller.
    On the stability of fully adaptive multiscale schemes for conservation laws using approximate flux and source reconstruction strategies.
    IMA Journal of Numerical Analysis, 30:1256-1295, 2010. MR 2727824 (2012b:65121)
  • 29. F. Iacono, G. May, S. Müller, and R. Schäfer.
    A high-order discontinuous Galerkin discretization with multiwavelet-based grid adaptation for compressible flows.
    AICES Preprint AICES-2011/08-1, RWTH Aachen, 2011.
  • 30. F. Keinert.
    Wavelets and multiwavelets.
    Studies in Advanced Mathematics. Chapman & Hall/CRC, Boca Raton, FL, 2004. MR 2035222 (2005b:42001)
  • 31. D. Kröner.
    Numerical schemes for conservation laws.
    Chichester: Wiley; Stuttgart: Teubner, 1997. MR 1437144 (98b:65003)
  • 32. S.N. Kruzhkov.
    First order quasilinear equations in several independent variables.
    Math. USSR Sbornik, 10:217-243, 1970.
  • 33. R.J. LeVeque.
    Finite volume methods for hyperbolic problems.
    Cambridge Texts in Applied Mathematics. Cambridge University Press, Cambridge, 2002. MR 1925043 (2003h:65001)
  • 34. S. G. Mallat.
    A theory for multiresolution signal decomposition: The wavelet representation.
    IEEE Trans. Pattern Anal. Machine Intell., 11(7):674-693, 1989.
  • 35. S. Müller.
    Adaptive multiscale schemes for conservation laws, volume 27 of Lecture Notes in Computational Science and Engineering.
    Springer-Verlag, Berlin, 2003. MR 1952371 (2004b:76102)
  • 36. S. Müller.
    Multiresolution schemes for conservation laws.
    DeVore, Ronald (ed.) et al., Multiscale, nonlinear and adaptive approximation. Dedicated to Wolfgang Dahmen on the occasion of his 60th birthday. Springer, Berlin. 379-4080, 2009. MR 2648379 (2011i:65142)
  • 37. S. Müller and A. Voss.
    A Manual for the Template Class Library igpm_t_lib.
    IGPM-Report 197, RWTH Aachen, 2000.
  • 38. O.A. Oleinik.
    Discontinuous solutions of nonlinear differential equations.
    Amer. Math. Soc. Transl. Ser. 2, 26:95-172, 1963. MR 0151737 (27:1721)
  • 39. S. Osher.
    Convergence of generalized MUSCL schemes.
    SIAM J. Numer. Anal., 22(5):947-961, 1985. MR 799122 (87b:65147)
  • 40. W.H. Reed and T.R. Hill.
    Triangular mesh methods for neutron transport equation.
    Technical Report LA-UR-73-479, Los Alamos Scientific Laboratory, Los Alamos, NM, 1973.
  • 41. J.-F. Remacle, J.E. Flaherty, and M.S. Shephard.
    An adaptive discontinuous Galerkin technique with an orthogonal basis applied to compressible flow problems.
    SIAM Review, 45(1):53-72, 2003. MR 1981254 (2004k:65176)
  • 42. R. Schäfer.
    Adaptive multiresolution discontinuous Galerkin schemes for conservation laws.
    Ph.D. thesis, RWTH Aachen, 2011.
  • 43. C.-W. Shu and S. Osher.
    Efficient implementation of essentially non-oscillatory shock-capturing scheme.
    J. Comp. Physics, 77:439-471, 1988. MR 954915 (89g:65113)
  • 44. V. Strela.
    Multiwavelets: Theory and applications.
    Ph.D. thesis, Massachusetts Institute of Technology, 1996. MR 2716668
  • 45. T. Tang and Z.-H. Teng.
    Error bounds for fractional step methods for conservation laws with source terms.
    SIAM J. Numer. Anal., 32(1):110-127, 1995. MR 1313707 (95m:65155)
  • 46. L. Wang and D.J. Mavriplis.
    Adjoint-based $ hp$ adaptive discontinuous Galerkin methods for the 2d compressible Euler equations.
    J. Comp. Phys., 228(20):7643-7661, 2009. MR 2561836
  • 47. R.F. Warming and R.M. Beam.
    Discrete multiresolution analysis using Hermite interpolation biorthogonal multiwavelets.
    SIAM J. Sci. Comput., 22(4):1269-1317, 2000. MR 1787296 (2001e:42055)

Similar Articles

Retrieve articles in Mathematics of Computation with MSC (2010): 35L65, 65M12, 65M60, 65T60, 74S05

Retrieve articles in all journals with MSC (2010): 35L65, 65M12, 65M60, 65T60, 74S05


Additional Information

Nune Hovhannisyan
Affiliation: Faculty of Informatics and Applied Mathematics, Alex Manoogian 1, Yerevan 0025, Armenia
Email: alnune03@yahoo.com

Siegfried Müller
Affiliation: Institut für Geometrie und Praktische Mathematik, RWTH Aachen University, Templergraben 55, 52056 Aachen, Germany
Email: mueller@igpm.rwth-aachen.de

Roland Schäfer
Affiliation: Institut für Geometrie und Praktische Mathematik, RWTH Aachen University, Templergraben 55, 52056 Aachen, Germany
Email: schaefer@igpm.rwth-aachen.de

DOI: https://doi.org/10.1090/S0025-5718-2013-02732-9
Received by editor(s): September 13, 2010
Received by editor(s) in revised form: October 20, 2011, March 6, 2012, and June 19, 2012
Published electronically: July 10, 2013
Additional Notes: This work has been performed with funding by the Deutsche Forschungsgemeinschaft in the Collaborative Research Center SFB 401 “Flow Modulation and Fluid-Structure Interaction at Airplane Wings” of RWTH Aachen University, Germany.
Article copyright: © Copyright 2013 American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.

American Mathematical Society