Remote Access Mathematics of Computation
Green Open Access

Mathematics of Computation

ISSN 1088-6842(online) ISSN 0025-5718(print)

 
 

 

Uniform-in-time superconvergence of the HDG methods for the acoustic wave equation


Authors: Bernardo Cockburn and Vincent Quenneville-Bélair
Journal: Math. Comp. 83 (2014), 65-85
MSC (2010): Primary 65M60, 65N30, 65M15, 65M22
DOI: https://doi.org/10.1090/S0025-5718-2013-02743-3
Published electronically: July 16, 2013
MathSciNet review: 3120582
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We present the first a priori error analysis of the hybridizable discontinuous Galerkin methods for the acoustic equation in the time-continuous case. We show that the velocity and the gradient converge with the optimal order of $ k+1$ in the $ L^2$-norm uniformly in time whenever polynomials of degree $ k \geq 0$ are used. Finally, we show how to take advantage of this local postprocessing to obtain an approximation to the original scalar unknown also converging with order $ k+2$ for $ k \geq 1$. This puts on firm mathematical ground the numerical results obtained in J. Comput. Phys. 230 (2011), 3695-3718.


References [Enhancements On Off] (What's this?)

  • [1] R. M. Alford, K. R. Kelly, and D. M. Boore, Accuracy of finite-difference modeling of the acoustic wave equation, Geophysics 39 (1974), no. 6, 834-842.
  • [2] Garth A. Baker, Error estimates for finite element methods for second order hyperbolic equations, SIAM J. Numer. Anal. 13 (1976), no. 4, 564-576. MR 0423836 (54 #11810)
  • [3] Peter Bastian and Béatrice Rivière, Superconvergence and $ H({\rm div})$ projection for discontinuous Galerkin methods, Internat. J. Numer. Methods Fluids 42 (2003), no. 10, 1043-1057. MR 1991232 (2004f:65177), https://doi.org/10.1002/fld.562
  • [4] E. Bécache, P. Joly, and C. Tsogka, An analysis of new mixed finite elements for the approximation of wave propagation problems, SIAM J. Numer. Anal. 37 (2000), no. 4, 1053-1084 (electronic). MR 1756415 (2001d:65124), https://doi.org/10.1137/S0036142998345499
  • [5] Oscar P. Bruno, New high-order integral methods in computational electromagnetism, CMES Comput. Model. Eng. Sci. 5 (2004), no. 4, 319-330. MR 2070392
  • [6] Oscar P. Bruno and Michael C. Haslam, Efficient high-order evaluation of scattering by periodic surfaces: vector-parametric gratings and geometric singularities, Waves Random Complex Media 20 (2010), no. 4, 530-550. MR 2747419 (2011k:65189), https://doi.org/10.1080/17455030.2010.499151
  • [7] Fatih Celiker, Bernardo Cockburn, and Ke Shi, A projection-based error analysis of HDG methods for Timoshenko beams, Math. Comp. 81 (2012), no. 277, 131-151. MR 2833490 (2012h:65143), https://doi.org/10.1090/S0025-5718-2011-02522-6
  • [8] Fatih Celiker, Bernardo Cockburn, and Ke Shi, Hybridizable discontinuous Galerkin methods for Timoshenko beams, J. Sci. Comput. 44 (2010), no. 1, 1-37. MR 2647497 (2011f:65249), https://doi.org/10.1007/s10915-010-9357-2
  • [9] Brandon Chabaud and Bernardo Cockburn, Uniform-in-time superconvergence of HDG methods for the heat equation, Math. Comp. 81 (2012), no. 277, 107-129. MR 2833489 (2012i:65198), https://doi.org/10.1090/S0025-5718-2011-02525-1
  • [10] Yanlai Chen and Bernardo Cockburn, Analysis of variable-degree HDG methods for convection-diffusion equations. Part I: general nonconforming meshes, IMA J. Numer. Anal. 32 (2012), no. 4, 1267-1293. MR 2991828, https://doi.org/10.1093/imanum/drr058
  • [11] Yingda Cheng and Chi-Wang Shu, Superconvergence of discontinuous Galerkin and local discontinuous Galerkin schemes for linear hyperbolic and convection-diffusion equations in one space dimension, SIAM J. Numer. Anal. 47 (2010), no. 6, 4044-4072. MR 2585178 (2011e:65187), https://doi.org/10.1137/090747701
  • [12] Bernardo Cockburn and Jintao Cui, An analysis of HDG methods for the vorticity-velocity-pressure formulation of the Stokes problem in three dimensions, Math. Comp. 81 (2012), no. 279, 1355-1368. MR 2904582, https://doi.org/10.1090/S0025-5718-2011-02575-5
  • [13] Bernardo Cockburn, Bo Dong, and Johnny Guzmán, A superconvergent LDG-hybridizable Galerkin method for second-order elliptic problems, Math. Comp. 77 (2008), no. 264, 1887-1916. MR 2429868 (2009d:65166), https://doi.org/10.1090/S0025-5718-08-02123-6
  • [14] Bernardo Cockburn, Bo Dong, and Johnny Guzmán, A hybridizable and superconvergent discontinuous Galerkin method for biharmonic problems, J. Sci. Comput. 40 (2009), no. 1-3, 141-187. MR 2511731 (2010h:65223), https://doi.org/10.1007/s10915-009-9279-z
  • [15] Bernardo Cockburn, Jayadeep Gopalakrishnan, and Raytcho Lazarov, Unified hybridization of discontinuous Galerkin, mixed, and continuous Galerkin methods for second order elliptic problems, SIAM J. Numer. Anal. 47 (2009), no. 2, 1319-1365. MR 2485455 (2010b:65251), https://doi.org/10.1137/070706616
  • [16] Bernardo Cockburn, Jayadeep Gopalakrishnan, Ngoc Cuong Nguyen, Jaume Peraire, and Francisco-Javier Sayas, Analysis of HDG methods for Stokes flow, Math. Comp. 80 (2011), no. 274, 723-760. MR 2772094 (2012d:65273), https://doi.org/10.1090/S0025-5718-2010-02410-X
  • [17] Bernardo Cockburn, Jayadeep Gopalakrishnan, and Francisco-Javier Sayas, A projection-based error analysis of HDG methods, Math. Comp. 79 (2010), no. 271, 1351-1367. MR 2629996 (2011d:65354), https://doi.org/10.1090/S0025-5718-10-02334-3
  • [18] Bernardo Cockburn, Johnny Guzmán, and Haiying Wang, Superconvergent discontinuous Galerkin methods for second-order elliptic problems, Math. Comp. 78 (2009), no. 265, 1-24. MR 2448694 (2009i:65213), https://doi.org/10.1090/S0025-5718-08-02146-7
  • [19] Bernardo Cockburn, Guido Kanschat, and Dominik Schotzau, A locally conservative LDG method for the incompressible Navier-Stokes equations, Math. Comp. 74 (2005), no. 251, 1067-1095 (electronic). MR 2136994 (2006a:65157), https://doi.org/10.1090/S0025-5718-04-01718-1
  • [20] B. Cockburn, N. C. Nguyen, and J. Peraire, A comparison of HDG methods for Stokes flow, J. Sci. Comput. 45 (2010), no. 1-3, 215-237. MR 2679797 (2011g:65246), https://doi.org/10.1007/s10915-010-9359-0
  • [21] Bernardo Cockburn, Weifeng Qiu, and Ke Shi, Conditions for superconvergence of HDG methods for second-order elliptic problems, Math. Comp. 81 (2012), no. 279, 1327-1353. MR 2904581, https://doi.org/10.1090/S0025-5718-2011-02550-0
  • [22] B. Cockburn and F.J. Sayas, Divergence-conforming HDG methods for Stokes flow, submitted.
  • [23] Bernardo Cockburn and Ke Shi, Conditions for superconvergence of HDG methods for Stokes flow, Math. Comp. 82 (2013), no. 282, 651-671. MR 3008833, https://doi.org/10.1090/S0025-5718-2012-02644-5
  • [24] Ramon Codina, Finite element approximation of the hyperbolic wave equation in mixed form, Comput. Methods Appl. Mech. Engrg. 197 (2008), no. 13-16, 1305-1322. MR 2387006 (2009a:65248), https://doi.org/10.1016/j.cma.2007.11.006
  • [25] Gary Cohen and Patrick Joly, Construction analysis of fourth-order finite difference schemes for the acoustic wave equation in nonhomogeneous media, SIAM J. Numer. Anal. 33 (1996), no. 4, 1266-1302. MR 1403546 (97k:65234), https://doi.org/10.1137/S0036142993246445
  • [26] David Colton and Rainer Kress, Inverse acoustic and electromagnetic scattering theory, 2nd ed., Applied Mathematical Sciences, vol. 93, Springer-Verlag, Berlin, 1998. MR 1635980 (99c:35181)
  • [27] Lawrence C. Cowsar, Todd F. Dupont, and Mary F. Wheeler, A priori estimates for mixed finite element methods for the wave equation, Comput. Methods Appl. Mech. Engrg. 82 (1990), no. 1-3, 205-222. Reliability in computational mechanics (Austin, TX, 1989). MR 1077657 (91i:65163), https://doi.org/10.1016/0045-7825(90)90165-I
  • [28] Lawrence C. Cowsar, Todd F. Dupont, and Mary F. Wheeler, A priori estimates for mixed finite element approximations of second-order hyperbolic equations with absorbing boundary conditions, SIAM J. Numer. Anal. 33 (1996), no. 2, 492-504. MR 1388485 (96m:65093), https://doi.org/10.1137/0733026
  • [29] M. A. Dablain, The application of high-order differencing to the scalar wave equation, Geophysics 51 (1986), no. 1, 54-66.
  • [30] Todd Dupont, $ L^{2}$-estimates for Galerkin methods for second order hyperbolic equations, SIAM J. Numer. Anal. 10 (1973), 880-889. MR 0349045 (50 #1539)
  • [31] Alexandre Ern and Jean-Luc Guermond, Theory and practice of finite elements, Applied Mathematical Sciences, vol. 159, Springer-Verlag, New York, 2004. MR 2050138 (2005d:65002)
  • [32] Lawrence C. Evans, Partial differential equations, Graduate Studies in Mathematics, vol. 19, American Mathematical Society, Providence, RI, 1998. MR 1625845 (99e:35001)
  • [33] Abdelaâziz Ezziani and Patrick Joly, Local time stepping and discontinuous Galerkin methods for symmetric first order hyperbolic systems, J. Comput. Appl. Math. 234 (2010), no. 6, 1886-1895. MR 2644184 (2011h:65172), https://doi.org/10.1016/j.cam.2009.08.094
  • [34] Richard S. Falk and Gerard R. Richter, Explicit finite element methods for symmetric hyperbolic equations, SIAM J. Numer. Anal. 36 (1999), no. 3, 935-952 (electronic). MR 1688992 (2000b:65181), https://doi.org/10.1137/S0036142997329463
  • [35] Franco Brezzi and Michel Fortin, Mixed and hybrid finite element methods, Springer Series in Computational Mathematics, vol. 15, Springer-Verlag, New York, 1991. MR 1115205 (92d:65187)
  • [36] Lucia Gastaldi and Ricardo H. Nochetto, Sharp maximum norm error estimates for general mixed finite element approximations to second order elliptic equations, RAIRO Modél. Math. Anal. Numér. 23 (1989), no. 1, 103-128 (English, with French summary). MR 1015921 (91b:65125)
  • [37] Tunc Geveci, On the application of mixed finite element methods to the wave equations, RAIRO Modél. Math. Anal. Numér. 22 (1988), no. 2, 243-250 (English, with French summary). MR 945124 (89i:65116)
  • [38] L. Greengard and V. Rokhlin, A fast algorithm for particle simulations, J. Comput. Phys. 73 (1987), no. 2, 325-348. MR 918448 (88k:82007), https://doi.org/10.1016/0021-9991(87)90140-9
  • [39] Marcus J. Grote, Anna Schneebeli, and Dominik Schötzau, Discontinuous Galerkin finite element method for the wave equation, SIAM J. Numer. Anal. 44 (2006), no. 6, 2408-2431 (electronic). MR 2272600 (2007k:65149), https://doi.org/10.1137/05063194X
  • [40] Eleanor W. Jenkins, Numerical solution of the acoustic wave equation using Raviart-Thomas elements, J. Comput. Appl. Math. 206 (2007), no. 1, 420-431. MR 2337454 (2008e:76113), https://doi.org/10.1016/j.cam.2006.08.003
  • [41] Eleanor W. Jenkins, Béatrice Rivière, and Mary F. Wheeler, A priori error estimates for mixed finite element approximations of the acoustic wave equation, SIAM J. Numer. Anal. 40 (2002), no. 5, 1698-1715 (electronic). MR 1950619 (2003k:65120), https://doi.org/10.1137/S0036142901388068
  • [42] Heinz-Otto Kreiss, N. Anders Petersson, and Jacob Yström, Difference approximations of the Neumann problem for the second order wave equation, SIAM J. Numer. Anal. 42 (2004), no. 3, 1292-1323 (electronic). MR 2113686 (2005j:65085), https://doi.org/10.1137/S003614290342827X
  • [43] Timo Lähivaara, Matti Malinen, Jari P. Kaipio, and Tomi Huttunen, Computational aspects of the discontinuous Galerkin method for the wave equation, J. Comput. Acoust. 16 (2008), no. 4, 507-530. MR 2523080 (2010e:65162), https://doi.org/10.1142/S0218396X08003762
  • [44] Yang Liu and Mrinal K. Sen, A new time-space domain high-order finite-difference method for the acoustic wave equation, J. Comput. Phys. 228 (2009), no. 23, 8779-8806. MR 2558777 (2010m:65182), https://doi.org/10.1016/j.jcp.2009.08.027
  • [45] Peter Monk and Gerard R. Richter, A discontinuous Galerkin method for linear symmetric hyperbolic systems in inhomogeneous media, J. Sci. Comput. 22/23 (2005), 443-477. MR 2142205 (2006b:65144), https://doi.org/10.1007/s10915-004-4132-5
  • [46] N. C. Nguyen, J. Peraire, and B. Cockburn, A hybridizable discontinuous Galerkin method for the incompressible Navier-Stokes equations (AIAA Paper 2010-362), Proceedings of the 48th AIAA Aerospace Sciences Meeting and Exhibit (Orlando, Florida), January 2010.
  • [47] N. C. Nguyen, J. Peraire, and B. Cockburn, High-order implicit hybridizable discontinuous Galerkin methods for acoustics and elastodynamics, J. Comput. Phys. 230 (2011), no. 10, 3695-3718. MR 2783813 (2012g:65206), https://doi.org/10.1016/j.jcp.2011.01.035
  • [48] N. C. Nguyen, J. Peraire, and B. Cockburn, An implicit high-order hybridizable discontinuous Galerkin method for the incompressible Navier-Stokes equations, J. Comput. Phys. 230 (2011), no. 4, 1147-1170. MR 2753354 (2011k:76055), https://doi.org/10.1016/j.jcp.2010.10.032
  • [49] N. C. Nguyen, J. Peraire, and B. Cockburn, Hybridizable discontinuous Galerkin methods, Proceedings of the International Conference on Spectral and High Order Methods (Trondheim, Norway), Lect. Notes Comput. Sci. Engrg., Springer Verlag, June 2009.
  • [50] N. C. Nguyen, J. Peraire, and B. Cockburn, An implicit high-order hybridizable discontinuous Galerkin method for linear convection-diffusion equations, J. Comput. Phys. 228 (2009), no. 9, 3232-3254. MR 2513831 (2010h:65232), https://doi.org/10.1016/j.jcp.2009.01.030
  • [51] N. C. Nguyen, J. Peraire, and B. Cockburn, An implicit high-order hybridizable discontinuous Galerkin method for nonlinear convection-diffusion equations, J. Comput. Phys. 228 (2009), no. 23, 8841-8855. MR 2558780 (2011a:65411), https://doi.org/10.1016/j.jcp.2009.08.030
  • [52] N. C. Nguyen, J. Peraire, and B. Cockburn, A hybridizable discontinuous Galerkin method for Stokes flow, Comput. Methods Appl. Mech. Engrg. 199 (2010), no. 9-12, 582-597. MR 2796169 (2011m:65286), https://doi.org/10.1016/j.cma.2009.10.007
  • [53] N. Nishimura, Fast multipole accelerated boundary integral equation methods, Applied Mechanics Reviews 55 (2002), no. 4, 299-324.
  • [54] J. Peraire, N. C. Nguyen, and B. Cockburn, A hybridizable discontinuous Galerkin method for the compressible Euler and Navier-Stokes equations (AIAA Paper 2010-363), Proceedings of the 48th AIAA Aerospace Sciences Meeting and Exhibit (Orlando, Florida), January 2010.
  • [55] Steffen Petersen, Charbel Farhat, and Radek Tezaur, A space-time discontinuous Galerkin method for the solution of the wave equation in the time domain, Internat. J. Numer. Methods Engrg. 78 (2009), no. 3, 275-295. MR 2542506 (2010m:65223), https://doi.org/10.1002/nme.2485
  • [56] P.-A. Raviart and J. M. Thomas, A mixed finite element method for 2nd order elliptic problems, Naz. delle Ricerche (C.N.R.), Rome, 1975) Springer, Berlin, 1977, pp. 292-315. Lecture Notes in Math., Vol. 606. MR 0483555 (58 #3547)
  • [57] S.-C. Soon, Hybridizable discontinuous Galerkin methods for solid mechanics, Ph.D. thesis, University of Minnesota, 2008.
  • [58] S.-C. Soon, B. Cockburn, and Henryk K. Stolarski, A hybridizable discontinuous Galerkin method for linear elasticity, Internat. J. Numer. Methods Engrg. 80 (2009), no. 8, 1058-1092. MR 2589528 (2011a:74015), https://doi.org/10.1002/nme.2646
  • [59] Rolf Stenberg, A family of mixed finite elements for the elasticity problem, Numer. Math. 53 (1988), no. 5, 513-538. MR 954768 (89h:65192), https://doi.org/10.1007/BF01397550
  • [60] Rolf Stenberg, Postprocessing schemes for some mixed finite elements, RAIRO Modél. Math. Anal. Numér. 25 (1991), no. 1, 151-167 (English, with French summary). MR 1086845 (92a:65303)
  • [61] Jacek Szarski, Differential inequalities, Monografie Matematyczne, Tom 43, Państwowe Wydawnictwo Naukowe, Warsaw, 1965. MR 0190409 (32 #7822)
  • [62] Liu Y. and Wei X., Finite-difference numerical modeling with even-order accuracy in two-phase anisotropic media, Applied Geophysics 5 (2008), 107-114.
  • [63] Abraham Zemui, Fourth order symmetric finite difference schemes for the acoustic wave equation, BIT 45 (2005), no. 3, 627-651. MR 2189769 (2006h:65131), https://doi.org/10.1007/s10543-005-0021-4

Similar Articles

Retrieve articles in Mathematics of Computation with MSC (2010): 65M60, 65N30, 65M15, 65M22

Retrieve articles in all journals with MSC (2010): 65M60, 65N30, 65M15, 65M22


Additional Information

Bernardo Cockburn
Affiliation: School of Mathematics, University of Minnesota, 206 Church Street S.E., Minneapolis, Minnesota 55455
Email: cockburn@math.umn.edu

Vincent Quenneville-Bélair
Affiliation: School of Mathematics, University of Minnesota, 206 Church Street S.E., Minneapolis, Minnesota 55455
Email: vqb@math.umn.edu

DOI: https://doi.org/10.1090/S0025-5718-2013-02743-3
Keywords: Discontinuous Galerkin methods, hybridization, superconvergence, hyperbolic problems
Received by editor(s): October 14, 2011
Received by editor(s) in revised form: January 26, 2012
Published electronically: July 16, 2013
Additional Notes: The first author was partially supported by the National Science Foundation (Grant DMS-1115331) and by the Minnesota Supercomputing Institute.
Article copyright: © Copyright 2013 American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.

American Mathematical Society