Remote Access Mathematics of Computation
Green Open Access

Mathematics of Computation

ISSN 1088-6842(online) ISSN 0025-5718(print)

Request Permissions   Purchase Content 


A posteriori error control of discontinuous Galerkin methods for elliptic obstacle problems

Authors: Thirupathi Gudi and Kamana Porwal
Journal: Math. Comp. 83 (2014), 579-602
MSC (2010): Primary 65N30, 65N15
Published electronically: June 19, 2013
MathSciNet review: 3143685
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: In this article, we derive an a posteriori error estimator for various discontinuous Galerkin (DG) methods that are proposed in (Wang, Han and Cheng, SIAM J. Numer. Anal., 48:708-733, 2010) for an elliptic obstacle problem. Using a key property of DG methods, we perform the analysis in a general framework. The error estimator we have obtained for DG methods is comparable with the estimator for the conforming Galerkin (CG) finite element method. In the analysis, we construct a non-linear smoothing function mapping DG finite element space to CG finite element space and use it as a key tool. The error estimator consists of a discrete Lagrange multiplier associated with the obstacle constraint. It is shown for non-over-penalized DG methods that the discrete Lagrange multiplier is uniformly stable on non-uniform meshes. Finally, numerical results demonstrating the performance of the error estimator are presented.

References [Enhancements On Off] (What's this?)

  • 1. M. Ainsworth and J. T. Oden.
    A posteriori error estimation in finite element analysis.
    Pure and Applied Mathematics (New York). Wiley-Interscience [John Wiley & Sons], New York, 2000. MR 1885308 (2003b:65001)
  • 2. D.N. Arnold.
    An interior penalty finite element method with discontinuous elements.
    SIAM J. Numer. Anal., 19:742-760, 1982. MR 664882 (83f:65173)
  • 3. D. N. Arnold, F. Brezzi, B. Cockburn and L. D. Marini.
    Unified analysis of discontinuous Galerkin methods for elliptic problems.
    SIAM J. Numer. Anal., 39:1749-1779, 2002. MR 1885715 (2002k:65183)
  • 4. K. Atkinson and W. Han.
    Theoretical Numerical Analysis. A functional analysis framework. Thrid edition, Springer, 2009. MR 2511061 (2010b:65001)
  • 5. I. Babuska and M. Zlámal.
    Nonconforming elements in the finite element method with penalty, SIAM J. Numer. Anal., 10:863-875, 1973. MR 0345432 (49:10168)
  • 6. S. Bartels and C. Carstensen.
    Averaging techniques yield reliable a posteriori finite element error control for obstacle problems, Numer. Math., 99:225-249, 2004. MR 2107431 (2005m:35067)
  • 7. F. Bassi, S. Rebay, G. Mariotti, S. Pedinotti, and M. Savini.
    A high-order accurate discontinuous finite element method for inviscid and viscous turbomachinery flows, in Proceedings of 2nd European Conference on Turbomachinery, Fluid Dynamics and Thermodynamics, R. Decuypere and G. Dibelius, eds., Technologisch Instituut, Antwerpen, Belgium, 1997, pp. 99-108.
  • 8. D. Braess.
    A posteriori error estimators for obstacle problems-another look.
    Numer. Math., 101:415-421, 2005. MR 2194822 (2006k:65287)
  • 9. S.C. Brenner.
    Two-level additive Schwarz preconditioners for nonconforming finite element methods.
    Math. Comp., 65:897-921, 1996. MR 1348039 (96j:65117)
  • 10. S.C. Brenner.
    Convergence of nonconforming multigrid methods without full elliptic regularity.
    Math. Comp., 68:25-53, 1999. MR 1620215 (99c:65229)
  • 11. S.C. Brenner.
    Poincaré-Friedrichs inequalities for piecewise $ H^1$ functions.
    SIAM J. Numer. Anal, 41:306-324, 2003. MR 1974504 (2004d:65140)
  • 12. S.C. Brenner and L.R. Scott.
    The Mathematical Theory of Finite Element Methods $ ($Third Edition$ )$.
    Springer-Verlag, New York, 2008. MR 2373954 (2008m:65001)
  • 13. S. C. Brenner L. Owens and L. Y. Sung.
    A weakly over-penalized symmetric interior penalty method.
    E. Tran. Numer. Anal, 30: 107-127, 2008. MR 2480072 (2009k:65236)
  • 14. F. Brezzi, W. W. Hager, and P. A. Raviart.
    Error estimates for the finite element solution of variational inequalities, Part I. Primal theory.
    Numer. Math., 28:431-443, 1977. MR 0448949 (56:7254)
  • 15. F. Brezzi, G. Manzini, D. Marini, P. Pietra and A. Russo.
    Discontinuous finite elements for diffusion problems, in Atti Convegno in onore di F. Brioschi (Milan, 1997), Istituto Lombardo, Accademia di Scienze e Lettere, Milan, Italy, 1999, pp. 197-217.
  • 16. F. Brezzi, G. Manzini, D. Marini, P. Pietra and A. Russo.
    Discontinuous Galerkin Approximations for elliptic problems.
    Numer. Meth. PDE, 16:365-378, 2000. MR 1765651 (2001e:65178)
  • 17. D. Braess, C. Carstensen and R.H.W. Hoppe.
    Convergence analysis of a conforming adaptive finite element method for an obstacle problem.
    Numer. Math., 107:455-471, 2007. MR 2336115 (2008f:65208)
  • 18. P. Castillo, B. Cockburn, I. Perugia and D. Schötzau.
    An a priori error analysis of the local discontinuous Galerkin method for elliptic problems.
    SIAM J. Numer. Anal., 38:1676-1706, 2000. MR 1813251 (2002k:65175)
  • 19. Z. Chen and R. Nochetto.
    Residual type a posteriori error estimates for elliptic obstacle problems.
    Numer. Math., 84:527-548, 2000. MR 1742264 (2001c:65134)
  • 20. P.G. Ciarlet.
    The Finite Element Method for Elliptic Problems.
    North-Holland, Amsterdam, 1978. MR 0520174 (58:25001)
  • 21. B. Cockburn and C.-W. Shu.
    The local discontinuous Galerkin method for time-dependent convection-diffusion systems, SIAM J. Numer. Anal., 35:2440-2463, 1998. MR 1655854 (99j:65163)
  • 22. W. Dörlfer.
    A convergent adaptive algorithm for Poisson's equation.
    SIAM J. Numer. Anal., 33:1106-1124, 1996. MR 1393904 (97e:65139)
  • 23. J. Douglas, Jr. and T. Dupont.
    Interior penalty procedures for elliptic and parabolic Galerkin methods.
    Lecture Notes in Phys., 58: Springer-Verlag, Berlin, 1976. MR 0440955 (55:13823)
  • 24. R. Glowinski.
    Numerical Methods for Nonlinear Variational Problems. Springer-Verlag, Berlin, 2008. MR 2423313 (2009c:65002)
  • 25. T. Gudi.
    A new error analysis for discontinuous finite element methods for linear elliptic problems, Math. Comp., 79:2169-2189, 2010. MR 2684360 (2011h:65223)
  • 26.
    Thirupathi Gudi, Neela Nataraj and Amiya K. Pani.
    hp-Discontinuous Galerkin methods for strongly nonlinear elliptic boundary value problems, Numer. Math., 109:233-268 (2008). MR 2385653 (2009b:65306)
  • 27. R. S. Falk.
    Error estimates for the approximation of a class of variational inequalities, Math. Comp., 28:963-971 (1974). MR 0391502 (52:12323)
  • 28. M. Hintermüller, K. Ito and K. Kunish.
    The primal-dual active set strategy as a semismooth Newton method.
    SIAM J. Optim., 13:865-888, 2003. MR 1972219 (2004b:90123)
  • 29. O.A. Karakashian and F. Pascal.
    A posteriori error estimates for a discontinuous Galerkin approximation of second-order elliptic problems.
    SIAM J. Numer. Anal., 41:2374-2399 (electronic), 2003. MR 2034620 (2005d:65192)
  • 30. D. Kinderlehrer and G. Stampacchia.
    An Introduction to Variational Inequalities and Their Applications.
    SIAM, Philadelphia, 2000. MR 1786735 (2002d:49001)
  • 31. R. Nochetto, T. V. Petersdorff and C. S. Zhang.
    A posteriori error analysis for a class of integral equations and variational inequalities.
    Numer. Math, 116:519-552, 2010. MR 2684296 (2011g:65103)
  • 32. B. Rivière, M.F. Wheeler, and V. Girault.
    A priori error estimates for finite element methods based on discontinuous approximation spaces for elliptic problems.
    SIAM J. Numer. Anal., 39:902-931, 2001. MR 1860450 (2002g:65149)
  • 33. V. Thomée.
    Galerkin Finite Element Methods for Parabolic Problems, Second Edition.
    Springer-Verlag, Berlin, 2006. MR 2249024 (2007b:65003)
  • 34. A. Veeser.
    Efficient and Reliable a posteriori error estimators for elliptic obstacle problems.
    SIAM J. Numer. Anal., 39:146-167, 2001. MR 1860720 (2002g:65150)
  • 35. R. Verfürth.
    A posteriori error estimation and adaptive mesh-refinement techniques.
    In Proceedings of the Fifth International Congress on Computational and Applied Mathematics (Leuven, 1992), volume 50, pages 67-83, 1994. MR 1284252 (95c:65171)
  • 36. R. Verfürth.
    A Review of A Posteriori Error Estimation and Adaptive Mesh-Refinement Techniques.
    Wiley-Teubner, Chichester, 1995.
  • 37. L. Wang.
    On the quadratic finite element approximation to the obstacle problem.
    Numer. Math., 92:771-778, 2002. MR 1935809 (2003i:65118)
  • 38. F. Wang, W. Han and X.Cheng.
    Discontinuous Galerkin methods for solving elliptic variational inequalities.
    SIAM J. Numer. Anal., 48:708-733, 2010. MR 2670002 (2011m:65139)
  • 39. M.F. Wheeler.
    An elliptic collocation-finite-element method with interior penalties.
    SIAM J. Numer. Anal., 15:152-161, 1978. MR 0471383 (57:11117)

Similar Articles

Retrieve articles in Mathematics of Computation with MSC (2010): 65N30, 65N15

Retrieve articles in all journals with MSC (2010): 65N30, 65N15

Additional Information

Thirupathi Gudi
Affiliation: Department of Mathematics, Indian Institute of Science, Bangalore - 560012, India

Kamana Porwal
Affiliation: Department of Mathematics, Indian Institute of Science, Bangalore - 560012, India

Keywords: Finite element, discontinuous Galerkin, a posteriori error estimate, obstacle problem, variational inequalities, Lagrange multiplier
Received by editor(s): November 1, 2011
Received by editor(s) in revised form: April 3, 2012, and June 18, 2012
Published electronically: June 19, 2013
Additional Notes: The first author’s work is supported by the UGC Center for Advanced Study
The second author’s work is supported in part by the UGC center for Advanced Study and in part by the Council of Scientific and Industrial Research (CSIR)
Article copyright: © Copyright 2013 American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.

American Mathematical Society