Remote Access Mathematics of Computation
Green Open Access

Mathematics of Computation

ISSN 1088-6842(online) ISSN 0025-5718(print)

Request Permissions   Purchase Content 
 
 

 

Every odd number greater than $ 1$ is the sum of at most five primes


Author: Terence Tao
Journal: Math. Comp. 83 (2014), 997-1038
MSC (2010): Primary 11P32
DOI: https://doi.org/10.1090/S0025-5718-2013-02733-0
Published electronically: June 24, 2013
MathSciNet review: 3143702
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We prove that every odd number $ N$ greater than $ 1$ can be expressed as the sum of at most five primes, improving the result of Ramaré that every even natural number can be expressed as the sum of at most six primes. We follow the circle method of Hardy-Littlewood and Vinogradov, together with Vaughan's identity; our additional techniques, which may be of interest for other Goldbach-type problems, include the use of smoothed exponential sums and optimisation of the Vaughan identity parameters to save or reduce some logarithmic losses, the use of multiple scales following some ideas of Bourgain, and the use of Montgomery's uncertainty principle and the large sieve to improve the $ L^2$ estimates on major arcs. Our argument relies on some previous numerical work, namely the verification of Richstein of the even Goldbach conjecture up to $ 4 \times 10^{14}$, and the verification of van de Lune and (independently) of Wedeniwski of the Riemann hypothesis up to height $ 3.29 \times 10^9$.


References [Enhancements On Off] (What's this?)

  • 1. E. Bombieri, H. Davenport, On the large sieve method, Abh. aus Zahlentheorie und Analysis zur Erinnerung an Edmund Landau, Deut. Verlag Wiss., Berlin, 11-22, 1968. MR 0260703 (41:5327)
  • 2. Y. Buttkewitz, Exponential sums over primes and the prime twin problem, Acta Math. Hungar. 131 (2011), no. 1-2, 46-58. MR 2776653 (2012c:11168)
  • 3. J. Bourgain, On triples in arithmetic progression, Geom. Funct. Anal. 9 (1999), no. 5, 968-984. MR 1726234 (2001h:11132)
  • 4. J. Chen, On the estimation of some trigonometric sums and their applications (Chinese), Scientia Sinica 28 (1985), 449-458. MR 813837 (87h:11076)
  • 5. J. R. Chen and T. Z. Wang, On odd Goldbach problem, Acta Math. Sinica 32 (1989), 702-718. MR 1046491 (91e:11108)
  • 6. J. Chen, T. Wang, Estimation of linear trigonometric sums with primes (Chinese), Acta Mathematica Sinica 37 (1994), 25-31. MR 1272501 (95c:11102)
  • 7. H. Daboussi, Effective estimates of exponential sums over primes, Analytic Number Theory, Vol. 1, Progr. Math. 138, Birkhäuser, Boston 1996, 231-244. MR 1399341 (97i:11088)
  • 8. H. Daboussi, J. Rivat, Explicit upper bounds for exponential sums over primes, Math. Computation 70 (2000), 431-447. MR 1803131 (2001k:11156)
  • 9. J.-M. Deshouillers, G. Effinger, H. te Riele, D. Zinoviev, A complete Vinogradov 3-primes theorem under the Riemann hypothesis, Electron. Res. Announc. Amer. Math. Soc. 3 (1997), 99-104. MR 1469323 (98g:11112)
  • 10. P. Dusart, Inégalités explicites pour $ \psi (X)$, $ \theta (X)$, $ \pi (X)$ et les nombres premiers, C. R. Math. Acad. Sci., Soc. R. Can., 21 (1999), 53-59. MR 1697455 (2000f:11125)
  • 11. P. Dusart, Estimates of $ \theta (x;k,l)$ for large values of $ x$, Math. Comp. 71 (2002), no. 239, 1137-1168. MR 1898748 (2003f:11139)
  • 12. P. Dusart, Estimates of some functions over primes without R. H., preprint. arxiv:1002.0442.
  • 13. P. X. Gallagher, The large sieve, Mathematika, 14 (1967), 14-20. MR 0214562 (35:5411)
  • 14. X. Gourdon, P. Demichel, The first $ 10^{13}$ zeros of the Riemann Zeta function, and zeros computation at very large height, http://numbers.computation.free.fr/
    Constants/Miscellaneous/zetazeros1e13-1e24.pdf
    , 2004.
  • 15. B. Green, T. Tao, Restriction theory of the Selberg sieve, with applications, J. Théor. Nombres Bordeaux 18 (2006), no. 1, 147-182. MR 2245880 (2007m:11132)
  • 16. G. H. Hardy, J. E. Littlewood, Some problems of `Partitio numerorum'; III: On the expression of a number as a sum of primes, Acta Math. 44 (1923), no. 1, 1-70. MR 1555183
  • 17. D. R. Heath-Brown, Zero-free regions for Dirichlet L-functions, and the least prime in an arithmetic progression, Proc. London Math. Soc. (3) 64 (1992), no. 2, 265-338. MR 1143227 (93a:11075)
  • 18. H. Helfgott, Minor arcs for Goldbach's problem, preprint.
  • 19. H. Iwaniec, E. Kowalski, Analytic number theory. American Mathematical Society Colloquium Publications, 53. American Mathematical Society, Providence, RI, 2004. MR 2061214 (2005h:11005)
  • 20. H. Kadiri, Short effective intervals containing primes in arithmetic progressions and the seven cubes problem, Math. Comp. 77 (2008), no. 263, 1733-1748. MR 2398791 (2009a:11195)
  • 21. L. Kaniecki, On Snirelman's constant under the Riemann hypothesis, Acta Arith. 72 (1995), no. 4, 361-374. MR 1348203 (96i:11112)
  • 22. A. F. Lavrik, On the twin prime hypothesis of the theory of primes by the method of I. M. Vinogradov, Soviet Math. Dokl., 1 (1960), 700-702. MR 0157955 (28:1183)
  • 23. M. Liu, T. Wang, Distribution of zeros of Dirichlet $ L$-functions and an explicit formula for $ \psi (t,\chi )$, Acta Arith. 102 (2002), no. 3, 261-293. MR 1884719 (2003f:11125)
  • 24. M. Liu, T. Wang, On the Vinogradov bound in the three primes Goldbach conjecture, Acta Arith. 105 (2002), no. 2, 133-175. MR 1932763 (2003i:11147)
  • 25. J. van de Lune, H. J. J. te Riele, D. T. Winter, On the zeros of the Riemann zeta function in the critical strip. IV, Math. Comp. 46 (1986), no. 174, 667-681. MR 829637 (87e:11102)
  • 26. J. E. van Lint, H. E. Richert, On primes in arithmetic progressions, Acta Arith., 11 (1965), 209-216. MR 0188174 (32:5613)
  • 27. K. McCurley, Explicit estimates for the error term in the prime number theorem for arithmetic progressions, Math. Comp. 42 (1984), no. 165, 265-285. MR 726004 (85e:11065)
  • 28. H. L. Montgomery, A note on the large sieve, J. London Math. Soc. 43 (1968), 93-98. MR 0224585 (37:184)
  • 29. H. L. Montgomery, Topics in Multiplicative Number Theory. Lecture Notes in Mathematics (Berlin), 227 (1971), 178pp. MR 0337847 (49:2616)
  • 30. H. Montgomery, The analytic principle of the large sieve, Bull. Amer. Math. Soc. 84 (1978), no. 4, 547-567. MR 0466048 (57:5931)
  • 31. H. L. Montgomery, R. C. Vaughan, The large sieve, Mathematika 20 (1973), 119-134. MR 0374060 (51:10260)
  • 32. T. Oliveira e Silva, http://www.ieeta.pt/˜tos/goldbach.html
  • 33. D. Platt, Computing degree $ 1$ $ L$-functions rigorously, Ph.D. Thesis, University of Bristol, 2011.
  • 34. D. Platt, Computing $ \pi (x)$ analytically, preprint.
  • 35. O. Ramaré, On Snirel'man's constant, Ann. Scu. Norm. Pisa 22 (1995), 645-706. MR 1375315 (97a:11167)
  • 36. O. Ramaré, Eigenvalues in the large sieve inequality, Funct. Approximatio, Comment. Math., 37 (2007), 7-35. MR 2363835 (2008j:11101)
  • 37. O. Ramaré, On Bombieri's asymptotic sieve, J. Number Theory 130 (2010), no. 5, 1155-1189. MR 2607306 (2011m:11194)
  • 38. O. Ramaré, I. M. Ruzsa, Additive properties of dense subsets of sifted sequences. J. Théorie N. Bordeaux, 13 (2001), 559-581. MR 1879673 (2002k:11162)
  • 39. O. Ramaré, R. Rumely, Primes in arithmetic progressions, Math. Comp. 65 (1996), no. 213, 397-425. MR 1320898 (97a:11144)
  • 40. O. Ramaré, Y. Saouter, Short effective intervals containing primes, J. Number Theory 98 (2003), no. 1, 10-33. MR 1950435 (2004a:11095)
  • 41. J. Richstein, Verifying the Goldbach conjecture up to $ 4 \times 10^{14}$, Mathematics of Computation 70 (2000), 1745-1749. MR 1836932 (2002c:11131)
  • 42. J.B. Rosser, Explicit bounds for some functions of prime numbers, Amer. J. Math. 63 (1941) 211-232. MR 0003018 (2:150e)
  • 43. J.B. Rosser, L. Schoenfeld, Approximate formulas for some functions of prime numbers, Ill. J. Math. 6 (1962), 64-94. MR 0137689 (25:1139)
  • 44. J.B. Rosser, L. Schoenfeld, Sharper bounds for the Chebyshev functions $ \theta (x)$ and $ \psi (x)$, Collection of articles dedicated to Derrick Henry Lehmer on the occasion of his seventieth birthday. Math. Comp. 29 (1975), 243-269. MR 0457373 (56:15581a)
  • 45. H. Siebert, Montgomery's weighted sieve for dimension two, Monatshefte für Mathematik 82 (1976), 327-336. MR 0424731 (54:12690)
  • 46. R. C. Vaughan, Sommes trigonometriques sur les nombres premiers, C.R. Acad. Sci. Paris, Ser A. (1977), 981-983. MR 0498434 (58:16555)
  • 47. I. M. Vinogradov, Representation of an odd number as a sum of three primes, Comptes Rendus (Doklady) de l'Academy des Sciences de l'USSR 15 (1937), 191-294.
  • 48. I. M. Vinogradov, The Method of Trigonometric Sums in Number Theory, Interscience Publ. (London, 1954).
  • 49. D. R. Ward, Some series involving Euler's function, London Math. Soc., 2 (1927), 210-214.
  • 50. S. Wedeniwski, ZetaGrid - Computational verification of the Riemann Hypothesis, Conference in Number Theory in Honour of Professor H.C. Williams, Banff, Alberta, Canada, May 2003.

Similar Articles

Retrieve articles in Mathematics of Computation with MSC (2010): 11P32

Retrieve articles in all journals with MSC (2010): 11P32


Additional Information

Terence Tao
Affiliation: Department of Mathematics, University of California, Los Angeles, Los Angeles, California 90095-1596
Email: tao@math.ucla.edu

DOI: https://doi.org/10.1090/S0025-5718-2013-02733-0
Received by editor(s): January 30, 2012
Received by editor(s) in revised form: July 3, 2012, and July 5, 2012
Published electronically: June 24, 2013
Article copyright: © Copyright 2013 American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.

American Mathematical Society