Remote Access Mathematics of Computation
Green Open Access

Mathematics of Computation

ISSN 1088-6842(online) ISSN 0025-5718(print)

 
 

 

A finite element method for Reissner-Mindlin plates


Author: Huoyuan Duan
Journal: Math. Comp. 83 (2014), 701-733
MSC (2010): Primary 65N30
DOI: https://doi.org/10.1090/S0025-5718-2013-02767-6
Published electronically: October 2, 2013
MathSciNet review: 3143689
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: A finite element method is proposed and analyzed for the Reissner-Mindlin plate problem subject to various boundary conditions. Rotation and transverse displacement variables are approximated by continuous linear elements (enriched with local bubbles) and an $ L^2$ projector is applied to the shear energy term onto the Raviart-Thomas $ H(\mathrm {div};\Omega )$ finite element. Stability and optimal error bounds hold uniformly in the plate thickness.


References [Enhancements On Off] (What's this?)

  • [1] Robert A. Adams, Sobolev spaces, Academic Press [A subsidiary of Harcourt Brace Jovanovich, Publishers], New York-London, 1975. Pure and Applied Mathematics, Vol. 65. MR 0450957 (56 #9247)
  • [2] Douglas N. Arnold and Franco Brezzi, Some new elements for the Reissner-Mindlin plate model, Boundary value problems for partial differential equations and applications, RMA Res. Notes Appl. Math., vol. 29, Masson, Paris, 1993, pp. 287-292. MR 1260452 (94k:73066)
  • [3] Douglas N. Arnold, Franco Brezzi, Richard S. Falk, and L. Donatella Marini, Locking-free Reissner-Mindlin elements without reduced integration, Comput. Methods Appl. Mech. Engrg. 196 (2007), no. 37-40, 3660-3671. MR 2339992 (2008h:74083), https://doi.org/10.1016/j.cma.2006.10.023
  • [4] Douglas N. Arnold and Richard S. Falk, A uniformly accurate finite element method for the Reissner-Mindlin plate, SIAM J. Numer. Anal. 26 (1989), no. 6, 1276-1290. MR 1025088 (91c:65068), https://doi.org/10.1137/0726074
  • [5] Douglas N. Arnold and Richard S. Falk, The boundary layer for the Reissner-Mindlin plate model, SIAM J. Math. Anal. 21 (1990), no. 2, 281-312. MR 1038893 (91c:73053), https://doi.org/10.1137/0521016
  • [6] Douglas N. Arnold and Richard S. Falk, Asymptotic analysis of the boundary layer for the Reissner-Mindlin plate model, SIAM J. Math. Anal. 27 (1996), no. 2, 486-514. MR 1377485 (97i:73064), https://doi.org/10.1137/S0036141093245276
  • [7] Douglas N. Arnold and Richard S. Falk, Analysis of a linear-linear finite element for the Reissner-Mindlin plate model, Math. Models Methods Appl. Sci. 7 (1997), no. 2, 217-238. MR 1440607 (98b:73034), https://doi.org/10.1142/S0218202597000141
  • [8] Douglas N. Arnold, Richard S. Falk, and Ragnar Winther, Preconditioning discrete approximations of the Reissner-Mindlin plate model, RAIRO Modél. Math. Anal. Numér. 31 (1997), no. 4, 517-557 (English, with English and French summaries). MR 1457459 (99b:73028)
  • [9] K. -J. Bathe, Finite Element Procedures, Prentice Hall, (1996)
  • [10] Christine Bernardi, Optimal finite-element interpolation on curved domains, SIAM J. Numer. Anal. 26 (1989), no. 5, 1212-1240 (English, with French summary). MR 1014883 (91a:65228), https://doi.org/10.1137/0726068
  • [11] Franco Brezzi, Klaus-Jürgen Bathe, and Michel Fortin, Mixed-interpolated elements for Reissner-Mindlin plates, Internat. J. Numer. Methods Engrg. 28 (1989), no. 8, 1787-1801. MR 1008138 (90g:73090), https://doi.org/10.1002/nme.1620280806
  • [12] F. Brezzi and M. Fortin, Numerical approximation of Mindlin-Reissner plates, Math. Comp. 47 (1986), no. 175, 151-158. MR 842127 (87g:73057), https://doi.org/10.2307/2008086
  • [13] Franco Brezzi and Michel Fortin, Mixed and hybrid finite element methods, Springer Series in Computational Mathematics, vol. 15, Springer-Verlag, New York, 1991. MR 1115205 (92d:65187)
  • [14] Franco Brezzi, Michel Fortin, and Rolf Stenberg, Error analysis of mixed-interpolated elements for Reissner-Mindlin plates, Math. Models Methods Appl. Sci. 1 (1991), no. 2, 125-151. MR 1115287 (92e:73030), https://doi.org/10.1142/S0218202591000083
  • [15] Philippe G. Ciarlet, The finite element method for elliptic problems, North-Holland Publishing Co., Amsterdam, 1978. Studies in Mathematics and its Applications, Vol. 4. MR 0520174 (58 #25001)
  • [16] D. Chapelle and R. Stenberg, An optimal low-order locking-free finite element method for Reissner-Mindlin plates, Math. Models Methods Appl. Sci. 8 (1998), no. 3, 407-430. MR 1624871 (99d:73088), https://doi.org/10.1142/S0218202598000172
  • [17] Xiao-liang Cheng, Weimin Han, and Hong-ci Huang, Finite element methods for Timoshenko beam, circular arch and Reissner-Mindlin plate problems, J. Comput. Appl. Math. 79 (1997), no. 2, 215-234. MR 1450282 (98a:73053), https://doi.org/10.1016/S0377-0427(97)00159-3
  • [18] P. Clément, Approximation by finite elements using local regularization, RAIRO Anal. Numér., 8(1975), pp. 77-83.
  • [19] Philippe Destuynder and Michel Salaun, Mathematical analysis of thin plate models, Mathématiques & Applications (Berlin) [Mathematics & Applications], vol. 24, Springer-Verlag, Berlin, 1996 (English, with French summary). MR 1422248 (2001e:74056)
  • [20] Huo-Yuan Duan and Guo-Ping Liang, Analysis of some stabilized low-order mixed finite element methods for Reissner-Mindlin plates, Comput. Methods Appl. Mech. Engrg. 191 (2001), no. 3-5, 157-179. MR 1868502 (2002h:74071)
  • [21] Duan Huo-Yuan and Guo-Ping Liang, An improved Reissner-Mindlin triangular element, Comput. Methods Appl. Mech. Engrg. 191 (2002), no. 21-22, 2223-2234. MR 1903143 (2003c:74092), https://doi.org/10.1016/S0045-7825(01)00376-0
  • [22] Huo-Yuan Duan and Guo-Ping Liang, Mixed and nonconforming finite element approximations of Reissner-Mindlin plates, Comput. Methods Appl. Mech. Engrg. 192 (2003), no. 49-50, 5265-5281. MR 2025565 (2004i:74074), https://doi.org/10.1016/j.cma.2003.07.009
  • [23] Huo-Yuan Duan and Guo-Ping Liang, A locking-free Reissner-Mindlin quadrilateral element, Math. Comp. 73 (2004), no. 248, 1655-1671 (electronic). MR 2059730 (2004m:74109), https://doi.org/10.1090/S0025-5718-03-01619-3
  • [24] Ricardo Durán, The inf-sup condition and error estimates for the Arnold-Falk plate bending element, Numer. Math. 59 (1991), no. 8, 769-778. MR 1128032 (92h:65167), https://doi.org/10.1007/BF01385809
  • [25] Ricardo Durán and Elsa Liberman, On mixed finite element methods for the Reissner-Mindlin plate model, Math. Comp. 58 (1992), no. 198, 561-573. MR 1106965 (92f:65135), https://doi.org/10.2307/2153202
  • [26] Ricardo G. Durán and Elsa Liberman, On the convergence of a triangular mixed finite element method for Reissner-Mindlin plates, Math. Models Methods Appl. Sci. 6 (1996), no. 3, 339-352. MR 1388710 (97e:73064), https://doi.org/10.1142/S0218202596000110
  • [27] Vivette Girault and Pierre-Arnaud Raviart, Finite element methods for Navier-Stokes equations, Springer Series in Computational Mathematics, vol. 5, Springer-Verlag, Berlin, 1986. Theory and algorithms. MR 851383 (88b:65129)
  • [28] Qiya Hu and Jun Zou, An iterative method with variable relaxation parameters for saddle-point problems, SIAM J. Matrix Anal. Appl. 23 (2001), no. 2, 317-338. MR 1871315 (2002j:65041), https://doi.org/10.1137/S0895479899364064
  • [29] Thomas J. R. Hughes and Leopoldo P. Franca, A mixed finite element formulation for Reissner-Mindlin plate theory: uniform convergence of all higher-order spaces, Comput. Methods Appl. Mech. Engrg. 67 (1988), no. 2, 223-240. MR 929284 (89g:73033), https://doi.org/10.1016/0045-7825(88)90127-2
  • [30] Alexander Iosilevich, Klaus-Jürgen Bathe, and Franco Brezzi, On evaluating the inf-sup condition for plate bending elements, Internat. J. Numer. Methods Engrg. 40 (1997), no. 19, 3639-3663. MR 1473619 (98h:73075), https://doi.org/10.1002/(SICI)1097-0207(19971015)40:19$ <$3639::AID-NME232$ >$3.3.CO;2-8
  • [31] Alexander Iosilevich, Klaus-Jürgen Bathe, and Franco Brezzi, Numerical inf-sup analysis of MITC plate bending elements, Plates and shells (Québec, QC, 1996) CRM Proc. Lecture Notes, vol. 21, Amer. Math. Soc., Providence, RI, 1999, pp. 225-242. MR 1696482 (2000d:74076)
  • [32] C. Lovadina, On the convergence of a mixed finite element method for Reissner-Mindlin plates, RAIRO Modél. Math. Anal. Numér. 28 (1994), no. 5, 557-573. MR 1295587 (95h:73067)
  • [33] Mikko Lyly, Jarkko Niiranen, and Rolf Stenberg, A refined error analysis of MITC plate elements, Math. Models Methods Appl. Sci. 16 (2006), no. 7, 967-977. MR 2250027 (2007f:65053), https://doi.org/10.1142/S021820250600142X
  • [34] Mikko Lyly, Jarkko Niiranen, and Rolf Stenberg, Superconvergence and postprocessing of MITC plate elements, Comput. Methods Appl. Mech. Engrg. 196 (2007), no. 33-34, 3110-3126. MR 2330771 (2008e:74077), https://doi.org/10.1016/j.cma.2007.02.006
  • [35] Mikko Lyly and Rolf Stenberg, The stabilized MITC plate bending elements, Computational mechanics (Buenos Aires, 1998) Centro Internac. Métodos Numér. Ing., Barcelona, 1998, pp. CD-ROM file. MR 1839065
  • [36] Pingbing Ming and Zhong-ci Shi, Optimal $ \mathcal {L}^2$ error bounds for MITC3 type element, Numer. Math. 91 (2002), no. 1, 77-91. MR 1896088 (2003e:65225), https://doi.org/10.1007/s002110100334
  • [37] Pingbing Ming and Zhong-Ci Shi, Analysis of some low order quadrilateral Reissner-Mindlin plate elements, Math. Comp. 75 (2006), no. 255, 1043-1065 (electronic). MR 2219018 (2007a:65207), https://doi.org/10.1090/S0025-5718-06-01833-3
  • [38] P. Peisker and D. Braess, Uniform convergence of mixed interpolated elements for Reissner-Mindlin plates, RAIRO Modél. Math. Anal. Numér. 26 (1992), no. 5, 557-574 (English, with English and French summaries). MR 1177387 (93j:73070)
  • [39] Juhani Pitkäranta, Analysis of some low-order finite element schemes for Mindlin-Reissner and Kirchhoff plates, Numer. Math. 53 (1988), no. 1-2, 237-254. MR 946378 (89f:65126), https://doi.org/10.1007/BF01395887
  • [40] Juhani Pitkäranta and Manil Suri, Design principles and error analysis for reduced-shear plate-bending finite elements, Numer. Math. 75 (1996), no. 2, 223-266. MR 1421988 (98c:73078), https://doi.org/10.1007/s002110050238
  • [41] Ridgway Scott, Interpolated boundary conditions in the finite element method, SIAM J. Numer. Anal. 12 (1975), 404-427. MR 0386304 (52 #7162)
  • [42] Rolf Stenberg, A new finite element formulation for the plate bending problem, Asymptotic methods for elastic structures (Lisbon, 1993) de Gruyter, Berlin, 1995, pp. 209-221. MR 1333214 (96k:73084)
  • [43] Daoqi Yang, Iterative schemes for mixed finite element methods with applications to elasticity and compressible flow problems, Numer. Math. 93 (2002), no. 1, 177-200. MR 1938327 (2003j:65109), https://doi.org/10.1007/s002110100356
  • [44] Tian Xiao Zhou, The partial projection method in the finite element discretization of the Reissner-Mindlin plate model, J. Comput. Math. 13 (1995), no. 2, 172-191. MR 1330561 (96m:73052)
  • [45] Miloš Zlámal, Curved elements in the finite element method. I, SIAM J. Numer. Anal. 10 (1973), 229-240. MR 0395263 (52 #16060)

Similar Articles

Retrieve articles in Mathematics of Computation with MSC (2010): 65N30

Retrieve articles in all journals with MSC (2010): 65N30


Additional Information

Huoyuan Duan
Affiliation: School of Mathematical Sciences, Nankai University, Tianjin 300071, China
Email: hyduan@nankai.edu.cn

DOI: https://doi.org/10.1090/S0025-5718-2013-02767-6
Keywords: Reissner-Mindlin plates, finite element method, Raviart-Thomas $H(\xdiv;\Omega)$ element, Inf-Sup condition
Received by editor(s): August 1, 2010
Received by editor(s) in revised form: June 4, 2011, and January 1, 2012
Published electronically: October 2, 2013
Additional Notes: The author was supported in part by the National Natural Science Foundation of China under grants 11071132 and 11171168 and the Research Fund for the Doctoral Program of Higher Education of China under grant 20100031110002 and 20120031110026.
Article copyright: © Copyright 2013 American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.

American Mathematical Society