Remote Access Mathematics of Computation
Green Open Access

Mathematics of Computation

ISSN 1088-6842(online) ISSN 0025-5718(print)

 
 

 

Values of the Euler $ \phi$-function not divisible by a given odd prime, and the distribution of Euler-Kronecker constants for cyclotomic fields


Authors: Kevin Ford, Florian Luca and Pieter Moree
Journal: Math. Comp. 83 (2014), 1447-1476
MSC (2010): Primary 11N37, 11Y60
DOI: https://doi.org/10.1090/S0025-5718-2013-02749-4
Published electronically: August 20, 2013
MathSciNet review: 3167466
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Let $ \phi $ denote Euler's phi function. For a fixed odd prime $ q$ we investigate the first and second order terms of the asymptotic series expansion for the number of $ n\le x$ such that $ q\nmid \phi (n)$. Part of the analysis involves a careful study of the Euler-Kronecker constants for cyclotomic fields. In particular, we show that the Hardy-Littlewood conjecture about counts of prime $ k$-tuples and a conjecture of Ihara about the distribution of these Euler-Kronecker constants cannot be both true.


References [Enhancements On Off] (What's this?)

  • [1] George E. Andrews and Bruce C. Berndt, Ramanujan's lost notebook. Part III, Springer, New York, 2012. MR 2952081
  • [2] A. I. Badzyan, The Euler-Kronecker constant, Mat. Zametki 87 (2010), no. 1, 35-47 (Russian, with Russian summary); English transl., Math. Notes 87 (2010), no. 1-2, 31-42. MR 2730381, https://doi.org/10.1134/S0001434610010050
  • [3] Bruce C. Berndt and Ken Ono, Ramanujan's unpublished manuscript on the partition and tau functions with proofs and commentary, Sém. Lothar. Combin. 42 (1999), Art. B42c, 63. The Andrews Festschrift (Maratea, 1998). MR 1701582 (2000i:01027)
  • [4] Yann Bugeaud, Maurice Mignotte, and Samir Siksek, Classical and modular approaches to exponential Diophantine equations. I. Fibonacci and Lucas perfect powers, Ann. of Math. (2) 163 (2006), no. 3, 969-1018. MR 2215137 (2007f:11031), https://doi.org/10.4007/annals.2006.163.969
  • [5] Harold Davenport, Multiplicative number theory, 3rd ed., Graduate Texts in Mathematics, vol. 74, Springer-Verlag, New York, 2000. Revised and with a preface by Hugh L. Montgomery. MR 1790423 (2001f:11001)
  • [6] Hubert Delange, Sur des formules de Atle Selberg, Acta Arith. 19 (1971), 105-146. (errata insert) (French). MR 0289432 (44 #6623)
  • [7] Christopher Deninger, On the analogue of the formula of Chowla and Selberg for real quadratic fields, J. Reine Angew. Math. 351 (1984), 171-191. MR 749681 (86f:11085), https://doi.org/10.1515/crll.1984.351.171
  • [8] L.E. Dickson, A new extension of Dirichlet's theorem on prime numbers, Messenger of Math., 33 (1904), 155-161.
  • [9] P.D.T.A. Elliott and H. Halberstam, A conjecture in prime number theory, Symp. Math. 4 (1968-69), 59-72. MR 0276195 (43 #1943)
  • [10] P. Erdős, On a problem of G. Golomb, J. Austral. Math. Soc. 2 (1961/1962), 1-8. MR 0123539 (23 #A864)
  • [11] FFTW Fast Fourier Transform C Library, available at http://www.fftw.org/.
  • [12] Greg Fee and Andrew Granville, The prime factors of Wendt's binomial circulant determinant, Math. Comp. 57 (1991), no. 196, 839-848. MR 1094948 (92f:11183), https://doi.org/10.2307/2938721
  • [13] Tony Forbes, Prime clusters and Cunningham chains, Math. Comp. 68 (1999), no. 228, 1739-1747. MR 1651752 (99m:11007), https://doi.org/10.1090/S0025-5718-99-01117-5
  • [14] T. Forbes, Prime $ k$-tuples, http://anthony.d.forbes.googlepages.com/ktuplets.htm
  • [15] A. Granville, On the size of the first factor of the class number of a cyclotomic field, Invent. Math. 100 (1990), no. 2, 321-338. MR 1047137 (91i:11145), https://doi.org/10.1007/BF01231189
  • [16] Kevin Ford, The distribution of integers with a divisor in a given interval, Ann. of Math. (2) 168 (2008), no. 2, 367-433. MR 2434882 (2009m:11152), https://doi.org/10.4007/annals.2008.168.367
  • [17] A. Fröhlich and M. J. Taylor, Algebraic number theory, Cambridge Studies in Advanced Mathematics, vol. 27, Cambridge University Press, Cambridge, 1993. MR 1215934 (94d:11078)
  • [18] H. Halberstam and H.-E. Richert, Sieve methods, Academic Press [A subsidiary of Harcourt Brace Jovanovich, Publishers], London-New York, 1974. London Mathematical Society Monographs, No. 4. MR 0424730 (54 #12689)
  • [19] G.H. Hardy and J.E. Littlewood, Some problems of a ``Partitio Numerorum'': III On the expression of a number as a sum of primes, Acta Math. 44 (1922), 1-70.
  • [20] Yasufumi Hashimoto, Yasuyuki Iijima, Nobushige Kurokawa, and Masato Wakayama, Euler's constants for the Selberg and the Dedekind zeta functions, Bull. Belg. Math. Soc. Simon Stevin 11 (2004), no. 4, 493-516. MR 2115723 (2006b:11106)
  • [21] Douglas Hensley and Ian Richards, On the incompatibility of two conjectures concerning primes, Analytic Number Theory (Proc. Sympos. Pure Math., Vol. XXIV, St. Louis Univ., St. Louis, Mo., 1972), Amer. Math. Soc., Providence, R.I., 1973, pp. 123-127. MR 0340194 (49 #4950)
  • [22] Yasutaka Ihara, On the Euler-Kronecker constants of global fields and primes with small norms, Algebraic geometry and number theory, Progr. Math., vol. 253, Birkhäuser Boston, Boston, MA, 2006, pp. 407-451. MR 2263195 (2007h:11127), https://doi.org/10.1007/978-0-8176-4532-8_5
  • [23] Yasutaka Ihara, The Euler-Kronecker invariants in various families of global fields, Arithmetics, geometry, and coding theory (AGCT 2005), Sémin. Congr., vol. 21, Soc. Math. France, Paris, 2010, pp. 79-102 (English, with English and French summaries). MR 2856562 (2012k:11182)
  • [24] Yasutaka Ihara, V. Kumar Murty, and Mahoro Shimura, On the logarithmic derivatives of Dirichlet $ L$-functions at $ s=1$, Acta Arith. 137 (2009), no. 3, 253-276. MR 2496464 (2009m:11135), https://doi.org/10.4064/aa137-3-6
  • [25] E. Landau, Über die Einteilung der positiven ganzen Zahlen in vier Klassen nach der Mindestzahl der zu ihrer additiven Zusammensetzung erforderlichen Quadrate, Arch. der Math. und Phys. (3) 13 (1908), 305-312. (See also his Collected Papers.)
  • [26] Edmund Landau, Losung des Lehmer'schen Problems, Amer. J. Math. 31 (1909), no. 1, 86-102 (German). MR 1506062, https://doi.org/10.2307/2370180
  • [27] E. Landau, Handbuch der Lehre von der Verteilung der Primzahlen, 3rd ed., Chelsea, New York, 1953.
  • [28] A. Languasco and A. Zaccagnini, A note on Mertens' formula for arithmetic progressions, J. Number Theory 127 (2007), no. 1, 37-46. MR 2351662 (2009g:11136), https://doi.org/10.1016/j.jnt.2006.12.015
  • [29] Alessandro Languasco and Alessandro Zaccagnini, On the constant in the Mertens product for arithmetic progressions. I. Identities. part 1, Funct. Approx. Comment. Math. 42 (2010), no. part 1, 17-27. MR 2640766 (2011b:11127), https://doi.org/10.7169/facm/1269437065
  • [30] A. Languasco and A. Zaccagnini, On the constant in the Mertens product for arithmetic progressions. II. Numerical values, Math. Comp. 78 (2009), no. 265, 315-326. MR 2448709 (2010g:11164), https://doi.org/10.1090/S0025-5718-08-02148-0
  • [31] Alessandro Languasco and Alessandro Zaccagnini, Computing the Mertens and Meissel-Mertens constants for sums over arithmetic progressions, Experiment. Math. 19 (2010), no. 3, 279-284. With an appendix by Karl K. Norton. MR 2743571 (2011j:11247), https://doi.org/10.1080/10586458.2010.10390624
  • [32] Philippe Lebacque, Generalised Mertens and Brauer-Siegel theorems, Acta Arith. 130 (2007), no. 4, 333-350. MR 2365709 (2009f:11073), https://doi.org/10.4064/aa130-4-3
  • [33] E. M. Matveev, An explicit lower bound for a homogeneous rational linear form in logarithms of algebraic numbers. II, Izv. Ross. Akad. Nauk Ser. Mat. 64 (2000), no. 6, 125-180 (Russian, with Russian summary); English transl., Izv. Math. 64 (2000), no. 6, 1217-1269. MR 1817252 (2002e:11091), https://doi.org/10.1070/IM2000v064n06ABEH000314
  • [34] Kevin S. McCurley, Explicit estimates for the error term in the prime number theorem for arithmetic progressions, Math. Comp. 42 (1984), no. 165, 265-285. MR 726004 (85e:11065), https://doi.org/10.2307/2007579
  • [35] H. L. Montgomery and R. C. Vaughan, The large sieve, Mathematika 20 (1973), 119-134. MR 0374060 (51 #10260)
  • [36] Hugh L. Montgomery and Robert C. Vaughan, Multiplicative number theory. I. Classical theory, Cambridge Studies in Advanced Mathematics, vol. 97, Cambridge University Press, Cambridge, 2007. MR 2378655 (2009b:11001)
  • [37] Pieter Moree, On some claims in Ramanujan's `unpublished' manuscript on the partition and tau functions, Ramanujan J. 8 (2004), no. 3, 317-330. MR 2111687 (2005h:11214), https://doi.org/10.1007/s11139-004-0142-4
  • [38] Pieter Moree, Chebyshev's bias for composite numbers with restricted prime divisors, Math. Comp. 73 (2004), no. 245, 425-449 (electronic). MR 2034131 (2005b:11154), https://doi.org/10.1090/S0025-5718-03-01536-9
  • [39] P. Moree, Values of the Euler phi function not divisible by a prescribed odd prime, math.NT/0611509, 2006, unpublished preprint.
  • [40] Pieter Moree, Counting numbers in multiplicative sets: Landau versus Ramanujan, Math. Newsl. 21 (2011), no. 3, 73-81. MR 3012680
  • [41] V. Kumar Murty, The Euler-Kronecker constant of a cyclotomic field, Ann. Sci. Math. Québec 35 (2011), no. 2, 239-247 (English, with English and French summaries). MR 2917834
  • [42] Władysław Narkiewicz, Elementary and analytic theory of algebraic numbers, 2nd ed., Springer-Verlag, Berlin, 1990. MR 1055830 (91h:11107)
  • [43] OEIS Foundation (2011), The On-Line Encyclopedia of Integer Sequences, http://oeis.org/.
  • [44] Michael Rosen, A generalization of Mertens' theorem, J. Ramanujan Math. Soc. 14 (1999), no. 1, 1-19. MR 1700882 (2000e:11143)
  • [45] J. Barkley Rosser and Lowell Schoenfeld, Approximate formulas for some functions of prime numbers, Illinois J. Math. 6 (1962), 64-94. MR 0137689 (25 #1139)
  • [46] J. Barkley Rosser and Lowell Schoenfeld, Sharper bounds for the Chebyshev functions $ \theta (x)$ and $ \psi (x)$, Math. Comp. 29 (1975), 243-269. Collection of articles dedicated to Derrick Henry Lehmer on the occasion of his seventieth birthday. MR 0457373 (56 #15581a)
  • [47] Daniel Shanks, The second-order term in the asymptotic expansion of $ B(x)$, Math. Comp. 18 (1964), 75-86. MR 0159174 (28 #2391)
  • [48] Blair K. Spearman and Kenneth S. Williams, Values of the Euler phi function not divisible by a given odd prime, Ark. Mat. 44 (2006), no. 1, 166-181. MR 2237219 (2007j:11133), https://doi.org/10.1007/s11512-005-0001-6
  • [49] Gérald Tenenbaum, Introduction to analytic and probabilistic number theory, Cambridge Studies in Advanced Mathematics, vol. 46, Cambridge University Press, Cambridge, 1995. Translated from the second French edition (1995) by C. B. Thomas. MR 1342300 (97e:11005b)
  • [50] M. A. Tsfasman, Asymptotic behaviour of the Euler-Kronecker constant, Algebraic geometry and number theory, Progr. Math., vol. 253, Birkhäuser Boston, Boston, MA, 2006, pp. 453-458. MR 2263196 (2007h:11129), https://doi.org/10.1007/978-0-8176-4532-8_6
  • [51] C.J. de la Vallée-Poussin, Recherches analytiques sur la théorie des nombres premiers I, Ann. Soc. Sci. Bruxelles 20 (1896), 183-256.
  • [52] Lawrence C. Washington, Introduction to cyclotomic fields, Graduate Texts in Mathematics, vol. 83, Springer-Verlag, New York, 1982. MR 718674 (85g:11001)

Similar Articles

Retrieve articles in Mathematics of Computation with MSC (2010): 11N37, 11Y60

Retrieve articles in all journals with MSC (2010): 11N37, 11Y60


Additional Information

Kevin Ford
Affiliation: Department of Mathematics, University of Illinois at Urbana-Champaign, 1409 West Green Street, Urbana, Illinois 61801, USA
Email: ford@math.uiuc.edu

Florian Luca
Affiliation: Fundación Marcos Moshinsky, UNAM, Circuito Exterior, C.U., Apdo. Postal 70-543, Mexico D.F. 04510, Mexico
Email: fluca@matmor.unam.mx

Pieter Moree
Affiliation: Max-Planck-Institut für Mathematik, Vivatsgasse 7, D-53111 Bonn, Germany.
Email: moree@mpim-bonn.mpg.de

DOI: https://doi.org/10.1090/S0025-5718-2013-02749-4
Received by editor(s): January 17, 2012
Received by editor(s) in revised form: June 20, 2012, and August 22, 2012
Published electronically: August 20, 2013
Additional Notes: The first author was supported in part by National Science Foundation grants DMS-0555367 and DMS-0901339.
The second author was supported in part by Grants SEP-CONACyT 79685 and PAPIIT 100508
Article copyright: © Copyright 2013 American Mathematical Society

American Mathematical Society