Remote Access Mathematics of Computation
Green Open Access

Mathematics of Computation

ISSN 1088-6842(online) ISSN 0025-5718(print)

Request Permissions   Purchase Content 
 
 

 

On the existence of extremal Type II $ \mathbb{Z}_{2k}$-codes


Authors: Masaaki Harada and Tsuyoshi Miezaki
Journal: Math. Comp. 83 (2014), 1427-1446
MSC (2010): Primary 94B05; Secondary 11H71, 11F11
DOI: https://doi.org/10.1090/S0025-5718-2013-02750-0
Published electronically: July 24, 2013
MathSciNet review: 3167465
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: For lengths $ 8$, $ 16$, and $ 24$, it is known that there is an extremal Type II $ \mathbb{Z}_{2k}$-code for every positive integer $ k$. In this paper, we show that there is an extremal Type II $ \mathbb{Z}_{2k}$-code of lengths $ 32,40,48,56$, and $ 64$ for every positive integer $ k$. For length $ 72$, it is also shown that there is an extremal Type II $ \mathbb{Z}_{4k}$-code for every positive integer $ k$ with $ k \ge 2$.


References [Enhancements On Off] (What's this?)

  • [1] Eiichi Bannai and Etsuko Bannai, A survey on spherical designs and algebraic combinatorics on spheres, European J. Combin. 30 (2009), no. 6, 1392-1425. MR 2535394 (2010i:05067), https://doi.org/10.1016/j.ejc.2008.11.007
  • [2] Eiichi Bannai, Steven T. Dougherty, Masaaki Harada, and Manabu Oura, Type II codes, even unimodular lattices, and invariant rings, IEEE Trans. Inform. Theory 45 (1999), no. 4, 1194-1205. MR 1686252 (2000i:94091), https://doi.org/10.1109/18.761269
  • [3] Alexis Bonnecaze, Patrick Solé, Christine Bachoc, and Bernard Mourrain, Type II codes over $ \mathbb{Z}_4$, IEEE Trans. Inform. Theory 43 (1997), no. 3, 969-976. MR 1454231 (98e:94025), https://doi.org/10.1109/18.568705
  • [4] W. Bosma, J.J. Cannon, C. Fieker and A. Steel, Handbook of Magma Functions (Edition 2.17), 2010, 5117 pages.
  • [5] Robin Chapman, Double circulant constructions of the Leech lattice, J. Austral. Math. Soc. Ser. A 69 (2000), no. 3, 287-297. MR 1793953 (2002a:11071)
  • [6] J. H. Conway and N. J. A. Sloane, A note on optimal unimodular lattices, J. Number Theory 72 (1998), no. 2, 357-362. MR 1651697 (99k:11104), https://doi.org/10.1006/jnth.1998.2257
  • [7] J. H. Conway and N. J. A. Sloane, Sphere packings, lattices and groups, 3rd ed., Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 290, Springer-Verlag, New York, 1999. With additional contributions by E. Bannai, R. E. Borcherds, J. Leech, S. P. Norton, A. M. Odlyzko, R. A. Parker, L. Queen and B. B. Venkov. MR 1662447 (2000b:11077)
  • [8] Steven T. Dougherty, Masaaki Harada, and Patrick Solé, Self-dual codes over rings and the Chinese remainder theorem, Hokkaido Math. J. 28 (1999), no. 2, 253-283. MR 1698423 (2000f:11085)
  • [9] Anthony V. Geramita and Jennifer Seberry, Orthogonal designs, Quadratic forms and Hadamard matrices, Lecture Notes in Pure and Applied Mathematics, vol. 45, Marcel Dekker Inc., New York, 1979. MR 534614 (82a:05001)
  • [10] T. Aaron Gulliver and Masaaki Harada, Orthogonal frames in the Leech lattice and a type II code over $ \mathbb{Z}_{22}$, J. Combin. Theory Ser. A 95 (2001), no. 1, 185-188. MR 1840485 (2002d:94061), https://doi.org/10.1006/jcta.2000.3159
  • [11] Masaaki Harada, New extremal type II codes over $ \mathbb{Z}_4$, Des. Codes Cryptogr. 13 (1998), no. 3, 271-284. MR 1601564 (99c:94044), https://doi.org/10.1023/A:1008254008212
  • [12] Masaaki Harada, Masaaki Kitazume, and Michio Ozeki, Ternary code construction of unimodular lattices and self-dual codes over $ \mathbb{Z}_6$, J. Algebraic Combin. 16 (2002), no. 2, 209-223. MR 1943589 (2004b:11099), https://doi.org/10.1023/A:1021185314365
  • [13] Masaaki Harada and Tsuyoshi Miezaki, An upper bound on the minimum weight of type II $ \mathbb{Z}_{2k}$-codes, J. Combin. Theory Ser. A 118 (2011), no. 1, 190-196. MR 2737192 (2012a:94251), https://doi.org/10.1016/j.jcta.2010.02.007
  • [14] Masaaki Harada, Akihiro Munemasa, and Boris Venkov, Classification of ternary extremal self-dual codes of length 28, Math. Comp. 78 (2009), no. 267, 1787-1796. MR 2501075 (2009m:94083), https://doi.org/10.1090/S0025-5718-08-02194-7
  • [15] Masaaki Harada, Patrick Solé, and Philippe Gaborit, Self-dual codes over $ \mathbb{Z}_4$ and unimodular lattices: a survey, Algebras and combinatorics (Hong Kong, 1997) Springer, Singapore, 1999, pp. 255-275. MR 1733182 (2001c:11074)
  • [16] W. Cary Huffman, On the classification and enumeration of self-dual codes, Finite Fields Appl. 11 (2005), no. 3, 451-490. MR 2158773 (2006h:94253), https://doi.org/10.1016/j.ffa.2005.05.012
  • [17] Paul Jenkins and Jeremy Rouse, Bounds for coefficients of cusp forms and extremal lattices, Bull. Lond. Math. Soc. 43 (2011), no. 5, 927-938. MR 2854563, https://doi.org/10.1112/blms/bdr030
  • [18] Anthony W. Knapp, Elliptic curves, Mathematical Notes, vol. 40, Princeton University Press, Princeton, NJ, 1992. MR 1193029 (93j:11032)
  • [19] Neal Koblitz, Introduction to elliptic curves and modular forms, Graduate Texts in Mathematics, vol. 97, Springer-Verlag, New York, 1984. MR 766911 (86c:11040)
  • [20] C. L. Mallows, A. M. Odlyzko, and N. J. A. Sloane, Upper bounds for modular forms, lattices, and codes, J. Algebra 36 (1975), no. 1, 68-76. MR 0376536 (51 #12711)
  • [21] C. L. Mallows and N. J. A. Sloane, An upper bound for self-dual codes, Information and Control 22 (1973), 188-200. MR 0414223 (54 #2326)
  • [22] Tsuyoshi Miezaki, Frames in the odd Leech lattice, J. Number Theory 132 (2012), no. 12, 2773-2778. MR 2965190, https://doi.org/10.1016/j.jnt.2012.05.030
  • [23] Toshitsune Miyake, Modular forms, Springer-Verlag, Berlin, 1989. Translated from the Japanese by Yoshitaka Maeda. MR 1021004 (90m:11062)
  • [24] M. Ram Murty, Congruences between modular forms, Analytic number theory (Kyoto, 1996) London Math. Soc. Lecture Note Ser., vol. 247, Cambridge Univ. Press, Cambridge, 1997, pp. 309-320. MR 1694998 (2000c:11073), https://doi.org/10.1017/CBO9780511666179.020
  • [25] Gabriele Nebe, An even unimodular 72-dimensional lattice of minimum 8, J. Reine Angew. Math. 673 (2012), 237-247. MR 2999133
  • [26] G. Nebe and N.J.A. Sloane, Unimodular lattices, together with a table of the best such lattices, in A Catalogue of Lattices, published electronically at http://www.math.
    rwth-aachen.de/~Gabriele.Nebe/LATTICES/
  • [27] Claude Pache, Shells of selfdual lattices viewed as spherical designs, Internat. J. Algebra Comput. 15 (2005), no. 5-6, 1085-1127. MR 2197823 (2007d:11076), https://doi.org/10.1142/S0218196705002797
  • [28] Vera Pless, Symmetry codes over $ {\rm GF}(3)$ and new five-designs, J. Combinatorial Theory Ser. A 12 (1972), 119-142. MR 0290865 (44 #8044)
  • [29] Eric M. Rains and N. J. A. Sloane, Self-dual codes, Handbook of coding theory, Vol. I, II, North-Holland, Amsterdam, 1998, pp. 177-294. MR 1667939
  • [30] Carl Ludwig Siegel, Berechnung von Zetafunktionen an ganzzahligen Stellen, Nachr. Akad. Wiss. Göttingen Math.-Phys. Kl. II 1969 (1969), 87-102 (German). MR 0252349 (40 #5570)
  • [31] B. B. Venkov, Even unimodular extremal lattices, Trudy Mat. Inst. Steklov. 165 (1984), 43-48 (Russian). Algebraic geometry and its applications. MR 752931 (85i:05044)

Similar Articles

Retrieve articles in Mathematics of Computation with MSC (2010): 94B05, 11H71, 11F11

Retrieve articles in all journals with MSC (2010): 94B05, 11H71, 11F11


Additional Information

Masaaki Harada
Affiliation: Department of Mathematical Sciences, Yamagata University, Yamagata 990–8560, Japan
Email: mharada@sci.kj.yamagata-u.ac.jp

Tsuyoshi Miezaki
Affiliation: Department of Mathematics, Oita National College of Technology, 1666 Oaza-Maki, Oita, 870–0152, Japan
Address at time of publication: Faculty of Education, Art and Science, Yamagata University, Yamagata 990-8560, Japan
Email: miezaki@e.yamagata-u.ac.jp

DOI: https://doi.org/10.1090/S0025-5718-2013-02750-0
Keywords: Self-dual code, unimodular lattice, $k$-frame, theta series
Received by editor(s): May 31, 2012
Received by editor(s) in revised form: July 24, 2012
Published electronically: July 24, 2013
Dedicated: In memory of Boris Venkov
Article copyright: © Copyright 2013 American Mathematical Society

American Mathematical Society