Remote Access Mathematics of Computation
Green Open Access

Mathematics of Computation

ISSN 1088-6842(online) ISSN 0025-5718(print)

 
 

 

Local computation of differents and discriminants


Author: Enric Nart
Journal: Math. Comp. 83 (2014), 1513-1534
MSC (2010): Primary 11Y40; Secondary 11Y05, 11R04, 11R27
DOI: https://doi.org/10.1090/S0025-5718-2013-02754-8
Published electronically: July 31, 2013
MathSciNet review: 3167470
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We obtain several results on the computation of different and discriminant ideals of finite extensions of local fields. As an application, we deduce routines to compute the $ \mathfrak{p}$-adic valuation of the discriminant $ \operatorname {Disc}(f)$, and the resultant $ \operatorname {Res}(f,g)$, for polynomials $ f(x),g(x)\in A[x]$, where $ A$ is a Dedekind domain and $ \mathfrak{p}$ is a non-zero prime ideal of $ A$ with finite residue field. These routines do not require the computation of either $ \operatorname {Disc} (f)$ or $ \operatorname {Res}(f,g)$; hence, they are useful in cases where this latter computation is inefficient because the polynomials have a large degree or very large coefficients.


References [Enhancements On Off] (What's this?)

  • [1] Jens-Dietrich Bauch, Enric Nart, Hayden D. Stainsby, Complexity of OM factorizations of polynomials over local fields, arXiv:1204.4671v1 [math.NT], LMS Journal of Computation and Mathematics, to appear.
  • [2] David Ford and Olga Veres, On the complexity of the Montes ideal factorization algorithm, Algorithmic number theory, Lecture Notes in Comput. Sci., vol. 6197, Springer, Berlin, 2010, pp. 174-185. MR 2721420 (2011m:11249), https://doi.org/10.1007/978-3-642-14518-6_16
  • [3] Joachim von zur Gathen and Jürgen Gerhard, Modern computer algebra, 2nd ed., Cambridge University Press, Cambridge, 2003. MR 2001757 (2004g:68202)
  • [4] Jordi Guàrdia, Jesús Montes, and Enric Nart, Okutsu invariants and Newton polygons, Acta Arith. 145 (2010), no. 1, 83-108. MR 2719575 (2011j:11220), https://doi.org/10.4064/aa145-1-5
  • [5] Jordi Guàrdia, Jesús Montes, and Enric Nart, Higher Newton polygons in the computation of discriminants and prime ideal decomposition in number fields, J. Théor. Nombres Bordeaux 23 (2011), no. 3, 667-696 (English, with English and French summaries). MR 2861080, https://doi.org/10.5802/jtnb.782
  • [6] Jordi Guàrdia, Jesús Montes, and Enric Nart, Newton polygons of higher order in algebraic number theory, Trans. Amer. Math. Soc. 364 (2012), no. 1, 361-416. MR 2833586 (2012k:11185), https://doi.org/10.1090/S0002-9947-2011-05442-5
  • [7] Jordia Guàrdia, Jesús Montes, Enric Nart, A new computational approach to ideal theory in number fields, arXiv:1005.1156v3[math.NT], to appear in Foundations of Computational Mathematics, DOI 10.1007/s10208-012-9137-5.
  • [8] Jordi Guàrdia, Enric Nart, and Sebastian Pauli, Single-factor lifting and factorization of polynomials over local fields, J. Symbolic Comput. 47 (2012), no. 11, 1318-1346. MR 2927133, https://doi.org/10.1016/j.jsc.2012.03.001
  • [9] Kurt Mahler, An inequality for the discriminant of a polynomial, Michigan Math. J. 11 (1964), 257-262. MR 0166188 (29 #3465)
  • [10] Enric Nart, Okutsu-Montes representations of prime ideals of one-dimensional integral closures, Publ. Mat. 55 (2011), no. 2, 261-294. MR 2839443 (2012h:11179), https://doi.org/10.5565/PUBLMAT_55211_01
  • [11] Kōsaku Okutsu, Construction of integral basis. I, II, Proc. Japan Acad. Ser. A Math. Sci. 58 (1982), no. 1, 47-49; 87-89. MR 649064 (83m:12023a)
  • [12] Öystein Ore, Bestimmung der diskriminanten algebraischer körper, Acta Math. 45 (1925), no. 1, 303-344 (German). MR 1555198, https://doi.org/10.1007/BF02395474
  • [13] Sebastian Pauli, Factoring polynomials over local fields II, Algorithmic number theory, Lecture Notes in Comput. Sci., vol. 6197, Springer, Berlin, 2010, pp. 301-315. MR 2721428 (2012c:12002), https://doi.org/10.1007/978-3-642-14518-6_24
  • [14] Arnold Schönhage and Volker Strassen, Schnelle Multiplikation grosser Zahlen, Computing (Arch. Elektron. Rechnen) 7 (1971), 281-292 (German, with English summary). MR 0292344 (45 #1431)
  • [15] Jean-Pierre Serre, Corps locaux, Hermann, Paris, 1968 (French). Deuxième édition; Publications de l'Université de Nancago, No. VIII. MR 0354618 (50 #7096)

Similar Articles

Retrieve articles in Mathematics of Computation with MSC (2010): 11Y40, 11Y05, 11R04, 11R27

Retrieve articles in all journals with MSC (2010): 11Y40, 11Y05, 11R04, 11R27


Additional Information

Enric Nart
Affiliation: Departament de Matemàtiques, Universitat Autònoma de Barcelona, Edifici C, E-08193 Bellaterra, Barcelona, Catalonia, Spain
Email: nart@mat.uab.cat

DOI: https://doi.org/10.1090/S0025-5718-2013-02754-8
Keywords: Different, discriminant, global field, local field, Montes algorithm, Newton polygon, Okutsu invariant, OM representation, resultant, Single-factor lifting algorithm
Received by editor(s): May 7, 2012
Received by editor(s) in revised form: September 5, 2012
Published electronically: July 31, 2013
Additional Notes: Partially supported by MTM2009-10359 from the Spanish MEC
Article copyright: © Copyright 2013 American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.

American Mathematical Society