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SERIES REPRESENTATION OF THE RIEMANN ZETA

FUNCTION AND OTHER RESULTS: COMPLEMENTS

TO A PAPER OF CRANDALL

MARK W. COFFEY

Abstract. We supplement a very recent paper of R. Crandall concerned
with the multiprecision computation of several important special functions and

numbers. We show an alternative series representation for the Riemann and
Hurwitz zeta functions providing analytic continuation throughout the whole
complex plane. Additionally, we demonstrate some series representations for
the initial Stieltjes constants appearing in the Laurent expansion of the Hur-
witz zeta function. A particular point of elaboration in these developments
is the hypergeometric form and its equivalents for certain derivatives of the
incomplete Gamma function. Finally, we evaluate certain integrals including
∫
Res=c

ζ(s)
s

ds and
∫
Res=c

η(s)
s

ds, with ζ the Riemann zeta function and η its
alternating form.

1. Introduction and statement of results

Very recently R. Crandall has described series-based algorithms for computing
multiprecision values of several important functions appearing in analytic number
theory and the theory of special functions [9]. These functions include the Lerch
transcendent Φ(z, s, a) =

∑∞
n=0 z

n/(n + a)s, and many of its special cases, and
Epstein zeta functions.

In the following we let Bn(x) and En(x) be the Bernoulli and Euler polynomials,
respectively, Γ the Gamma function, and Γ(x, y) the incomplete Gamma function
(e.g., [1, 2, 13]). An example series representation from [9, (27)] is that for the
Hurwitz zeta function ζ(s, a),

(1.1) ζ(s, a) =
1

Γ(s)

∞∑
n=0

Γ[s, λ(n + a)]

(n + a)s
+

1

Γ(s)

∞∑
m=0

(−1)m
Bm(a)

m!

λm+s−1

(m + s− 1)
,

with free parameter λ ∈ [0, 2π).
We complement the presentation of [9] with further representation of the Rie-

mann zeta function ζ(s) = ζ(s, 1) and some results on the Stieltjes constants. The
latter constants γn(a) (e.g., [4–7]) appear in the Laurent expansion

(1.2) ζ(s, a) =
1

s− 1
+

∞∑
n=0

(−1)n

n!
γn(a)(s− 1)n,
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where γ0(a) = −ψ(a), the Euler constant γ0 = γ = −ψ(1), and by convention one
takes γk = γk(1). Here ψ = Γ′/Γ denotes the digamma function (e.g., [1, 2, 13]).
The Stieltjes constants may be expressed via the limit formula

γk(a) = lim
N→∞

[
N∑

n=0

lnk(n + a)

n + a
− lnk+1(N + a)

k + 1

]
.

We let η(s) = (1−21−s)ζ(s) denote the alternating Riemann zeta function, given

for Re s > 0 by η(s) =
∑∞

n=1
(−1)n−1

ns . The following series representation provides
an analytic continuation of the Riemann zeta function to the whole complex plane.

Proposition 1. Let |λ| < π. Then

(1.3) Γ(s)η(s) =

∞∑
m=1

(−1)m−1Γ(s,mλ)

ms
+

1

2

∞∑
n=0

En(0)

n!

λn+s

(n + s)
.

This representation holds in all of C. In particular, it delivers the special values
η(−j) = (−1)jEj(0)/2 for j ≥ 0. An alternative expression for the values En(0)
is [1, p. 805] En(0) = −2(n + 1)−1(2n+1 − 1)Bn+1 for n ≥ 1 in terms of Bernoulli
numbers Bn = Bn(0).

Remark. The values En(0) = −En(1) for n ≥ 2 even are zero while E0(0) = 1. The
signs of two adjacent values of odd indices are opposite.

Proposition 1 has many implications. For example, for λ = 1 we have the
following, with Lis denoting the polylogarithm function.

Corollary 1.

(1.4a) ln 2 = ln(1 + e) − 1 +
1

2

∞∑
n=0

En(0)

(n + 1)!

and

(1.4b)
1

2
ζ(2) = ln(1 + e) − 1 − Li2

(
−1

e

)
+

1

2

∞∑
n=0

En(0)

n!(n + 2)
.

We apply the representation (1.1) for a later proposition. First, we verify some
well-known properties of the Hurwitz zeta function from (1.1). Their proofs are
given so as to elucidate how they follow from that series representation.

Corollary 2. (a)

(1.5) ζ(s, a) = ζ(s, a + 1) + a−s,

(b)

(1.6) ∂aζ(s, a) = −sζ(s + 1, a),

(c) for integers q ≥ 2,

(1.7)

q−1∑
r=1

ζ

(
s,

r

q

)
= (qs − 1)ζ(s),

(d) for Re s < 1,

(1.8)

∫ 1

0

ζ(s, a)da = 0.
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By induction, (1.6) gives ∂j
aζ(s, a) = (−1)j(s)jζ(s + j, a), where (z)n = Γ(z +

n)/Γ(z) is the Pochhammer symbol.

We let pFq denote the generalized hypergeometric function (e.g., [1, 2, 13]).
Derivatives of the incomplete Gamma function with respect to the first argument
may be expressed in hypergeometric form. An example is given in the following.

Proposition 2.

(1.9)
Γ(1)(s, x) ≡ ∂

∂s
Γ(s, x) =

∫ ∞

x

ts−1 ln t e−tdt

=
xs

s2
2F2(s, s; s + 1, s + 1;−x) + Γ(s)[− lnx + ψ(s)] + lnxΓ(s, x).

Later we provide a separate discussion for such derivatives.

Proposition 3. Let Re a > 0. Then
(a)

(1.10) −γ − ψ(a) = γ0(a) − γ = e−aΦ

(
1

e
, 1, a

)
+

∞∑
m=1

(−1)m

m!

Bm(a)

m
,

(b)

(1.11)
γ2

2
+ γψ(a) +

ζ(2)

2
− γ1(a) =

∞∑
n=0

Γ(0, n + a)

n + a
−

∞∑
m=1

(−1)m

m!

Bm(a)

m2
,

(c)

−γ3

6
− γ

ζ(2)

2
−
(
γ2

2
+

ζ(2)

2

)
ψ(a) + γγ1(a) −

ζ(3)

3
+

γ2(a)

2

=
∞∑

n=0

{
−3F3(1, 1, 1; 2, 2, 2;−n−a)+

1

(a+n)

[
γ ln(n+a)+

γ2

2
+
ζ(2)

2
+

1

2
ln2(n+a)

]}

(1.12) +

∞∑
m=1

(−1)m

m!

Bm(a)

m3
.

Corollary 3. For λ ∈ [0, 2π),

ln Γ(x) = γ(1 − x) − lnλ(x− 1) +

∞∑
n=0

{Γ[0, λ(n + x)] − Γ[0, λ(n + 1)]}

+

∞∑
m=2

(−1)m

(m− 1)m!
[Bm(x) −Bm]λm−1.

Alternative forms of the Bernoulli polynomial sums of Proposition 3 and of
another sum in (1.11) are given in the following.

Lemma 1. Let Re a > 0. Then
(a)

(1.13)

∞∑
m=1

(−1)m

m!

Bm(a)

m
= −1

a

[
e−a

2F1(1, a; a + 1; e−1) + a(γ + ψ(a))
]
.
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In particular,

(1.14) −
∞∑

m=1

Bm

m!

1

m
=

∞∑
n=1

e−n

n
= 1 − ln(e− 1).

(b)

(1.15)
∞∑

m=1

Bm(a)

m!

tm

m
= −1

a

[
eat 2F1(1, a; a + 1; et) + a(γ + ln(−t) + ψ(a))

]
.

(c)
(1.16)

∞∑
m=1

Bm(a)

m!

zm

m2
= −1

a

∫ z

0

[
eat 2F1(1, a; a + 1; et) + a(γ + ln(−t) + ψ(a))

] dt
t
.

(d)

(1.17)
∞∑

n=0

Γ(0, n + a)

n + a
= −1

a

∫ 1/e

0

ua−1

lnu
2F1(1, a; 1 + a;u)du.

2. Proof of Propositions

Proposition 1. We apply the integration technique Crandall refers to as “Bernoulli
splitting” and use the integral representation for Re s > 0 (e.g., [1, p. 807]:

(2.1) Γ(s)η(s) =

∫ ∞

0

ts−1

et + 1
dt.

Splitting the integral at λ, we use the generating function

(2.2)
2exz

ez + 1
=

∞∑
n=0

En(x)
zn

n!
, |z| < π,

for the integration on [0, λ). For the other integration we use a standard integral
representation for the incomplete Gamma function, together with a geometric series
expansion:

(2.3)

∫ ∞

λ

ts−1

et + 1
dt =

∞∑
m=0

(−1)m
∫ ∞

λ

e−(m+1)tts−1dt

=
∞∑

m=0

(−1)m

(m + 1)s
Γ[s, λ(m + 1)].

The sum in (1.3) converges uniformly away from poles so it provides an analytic
continuation to Re s ≤ 0.

For Corollary 1 we recall that for n ≥ 0 [13, p. 941],

(2.4) Γ(n + 1, x) = n!e−x
n∑

m=0

xm

m!
,

and Li2(z) =
∑∞

n=1 z
n/n2.
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Remarks. We have supplied details for Crandall’s Algorithm 1 for the η function.
For the values En(0), their asymptotic form is a case of the following [11, 24.11.6],

(−1)�(n+1)/2�π
n+1

4(n!)
En(x) →

{
sin(πx) , n even,

cos(πx) , n odd,

and one has the bounds for 0 < x < 1/2 [11, 24.9.5],

4(2n− 1)!

π2n

22n − 1

22n − 2
> (−1)nE2n−1(x) > 0.

A similar treatment can be made of

(2.5)

∫ ∞

0

ts−1e−(a−1)t

et + 1
dt = 2−sΓ(s)

[
ζ
(
s,

a

2

)
− ζ

(
s,

a + 1

2

)]

= Γ(s)

∞∑
n=0

(−1)n

(n + a)s
,

where Re a > 0 and Re s > 0. This yields, for |λ| < π,

(2.6)

2−sΓ(s)

[
ζ
(
s,

a

2

)
− ζ

(
s,

a + 1

2

)]
=

∞∑
m=0

(−1)m
Γ[s, λ(m + a)]

(m + a)s

+
1

2

∞∑
n=0

En(1 − a)

n!

λn+s

(n + s)
,

again providing analytic continuation to all of C. Here the polar part is absent,
and this representation could be used to develop expressions for the differences of
Stieltjes constants γk(a/2) − γk[(a + 1)/2].

As an illustration of Proposition 1, Figure 1 plots the natural logarithm of the
absolute value of the relative error in the value of η(−3/2), ln[|ηnum(−3/2) −
η(−3/2)|/η(−3/2)], versus the truncation size N of the sums in (1.3), wherein
ηnum(−3/2) is calculated from that equation, and the reference value of η(−3/2)
has been computed from Mathematica c© V8. The values of λ in this figure are
1, 1.75, and 2.5, with increasing accuracy obtained for decreasing λ. For N = 40
and λ = 1, the value of η(−3/2) from (1.3) is correct to 19 decimal digits. As
Γ(s, y) ∼ e−yys−1 as y → ∞, the rate of convergence is governed by the second
sum in (1.3) with the Euler numbers En(0).

Corollary 2. For part (a), use the property Bm(a + 1) = Bm(a) + mam−1 and the
sum (by [13, p. 941]),

(2.7)
∞∑

m=0

(−1)m+1 a
m

m!

λm+s

(m + s)
= a−s[Γ(s, aλ) − Γ(s)].

For part (b), use the derivative dΓ(α, x)/dx = −xα−1e−x and the functional re-
lations αΓ(α, x) = Γ(α + 1, x) − xαe−x and Γ(s) = Γ(s + 1)/s. For part (c), use∑q−1

r=1 Bm

(
r
q

)
= (q1−m−1)Bm and (−1)mBm(1) = Bm. The following decomposi-

tion, wherein the generating function (2.24) is employed, can then be used to verify
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4 8 12 16 20 24 28 32 36 40
N

−40

−30

−20

−10

relative error

Figure 1. Plot of the natural logarithm of the absolute value of
the relative error in η(−3/2) computed from (1.3).

the stated property:

(2.8)

qsζ(s) =
qs

Γ(s)

∫ ∞

0

ys−1

ey − 1
dy

=
qs

Γ(s)

[∫ λ/q

0

ys−1

ey − 1
dy +

∫ ∞

λ/q

ys−1

ey − 1
dy

]

=
1

Γ(s)

∞∑
m=0

q1−mBm

m!

λm+s−1

(m + s− 1)

+
qs

Γ(s)

∞∑
n=0

∫ ∞

λ/q

e−(n+1)qy(eqy − 1)ys−1

ey − 1
dy.

For part (d), we first note that
∫ 1

0
Bm(a)da = 0 for all m ≥ 1, giving from (1.1),

(2.9) Γ(s)

∫ 1

0

ζ(s, a)da =

∞∑
n=0

∫ 1

0

Γ(s, λ(n + a)]

(n + a)s
da +

λs−1

s− 1
.

Integrating by parts,

(2.10)

∫ 1

0

Γ(s, λ(n + a)]

(n + a)s
da = − 1

(s− 1)

∫ 1

0

Γ(s, λ(n + a)]

(
d

da

1

(n + a)s−1

)
da

=
1

s− 1

[
− λs−1e−λn + λs−1e−λ(n+1) + n1−sΓ(s, λn)

− (n + 1)1−sΓ(s, λ(n + 1))
]
.

Then the sum in (2.9) telescopes to −λs−1/(s− 1) and (1.8) follows. �
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Remark. More generally than part (c), we have the reciprocity relation ([7, Lemma
1]),

(2.11)

q∑
r=1

ζ

(
s,

pr

q
− b

)
=

(
q

p

)s p−1∑
�=0

ζ

(
s,


q + p

p
− qb

p

)
.

Here p ≥ 1 and q ≥ 1 are integers, b ≥ 0, and min(p/q, q/p) > b. From (2.11)
follows ([7, Corollary 3]),

(2.12)

q∑
r=1

Bm

(
pr

q
− b

)
=

(
q

p

)1−m p−1∑
�=0

Bm

[
1 + (
− b)

q

p

]
.

Proposition 2. First integrating by parts we have

Γ(1)(s, x) ≡ ∂

∂s
Γ(s, x) =

∫ ∞

x

ts−1 ln t e−tdt

(2.13) = −
∫ ∞

x

ln t
∂

∂t
Γ(s, t)dt =

∫ ∞

x

Γ(s, t)

t
dt + lnx Γ(s, x).

We next recall a hypergeometric form of Γ(x, y),

Γ(α, x) = Γ(α) − xα

α
1F1(α, 1 + α;−x)

(2.14) = Γ(α) − xα

α

∞∑
j=0

α

(α + j)

(−x)j

j!
,

with 1F1 the confluent hypergeometric function. This expression may be integrated
on a finite interval. For an improper integral extending to infinity we need some
asymptotic information contained in the following.

Lemma 2 (Asymptotic form of special pFp functions). As x → ∞
(a)

(2.15) 2F2(s, s; s + 1, s + 1;−x) ∼ e−x s
2

x2
+ x−ss2Γ(s)[lnx− ψ(s)],

(b)

(2.16)
3F3(s, s, s; s + 1, s + 1, s + 1;−x) ∼ −e−x s

3

x3

+ x−s s
3

2
Γ(s)[ln2 x− 2 ln xψ(s) + ψ2(s) + ψ′(s)].

Here ψ′ is the trigamma function.

(a) We use a general procedure based upon the Barnes integral representation
of pFq ([15, Section 2.3]). We have

(2.17) 2F2 (s, s; s + 1, s + 1;−x) =
1

2πi

∫ i∞

−i∞
Γ(−y)Γ(y + 1)g(y)xydy,

where the path of integration is a Barnes contour, indented to the left of the origin
but staying to the right of −s, and

(2.18) Γ(y + 1)g(y) =
Γ2(y + s)

Γ2(y + s + 1)

Γ2(s + 1)

Γ2(s)
=

s2

(y + s)2
.
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The contour can be thought of as closed in the right half-plane, over a semicircle
of infinite radius. We then move the contour to the left of y = −s, picking up the
residue there. We find

(2.19) s2Resy=−s
Γ(−y)xy

(y + s)2
=

s2

xs
Γ(s)[lnx− ψ(s)].

This gives the algebraic part of the asymptotic form of the 2F2 function, that is,
the leading portion. The higher order terms come from the exponential expansion
of these functions, and they are infinite in number. The latter expansion may be
determined according to ([15, Section 2.3, p. 57]).

(b) proceeds similarly, where now

(2.20) s3Resy=−s
Γ(−y)xy

(y + s)3
=

s3

2xs
Γ(s)[ln2 x− 2 lnxψ(s) + ψ2(s) + ψ′(s)].

We may integrate in (2.13) from x to b using (2.14),

(2.21)

∫ b

x

Γ(s, t)

t
dt =

xs

s2
2F2(s, s; s + 1, s + 1;−x)

− bs

s2
2F2(s, s; s + 1, s + 1;−b) + Γ(s)(ln b− lnx).

Then with the lemma in hand, taking b → ∞ completes the proposition.

Remark. The result (1.9) can be obtained directly from (2.14). For, since Γ′(α) =
Γ(α)ψ(α), we have

∂

∂α
Γ(α, x) = Γ(α)ψ(α) + lnx[Γ(α, x) − Γ(α)] + xα

∞∑
j=0

1

(α + j)2
(−x)j

j!

=
∂

∂α
Γ(α, x) = Γ(α)ψ(α) + lnx[Γ(α, x) − Γ(α)] +

xα

α2

∞∑
j=0

(α)2j
(α + 1)2j

(−x)j

j!

=
∂

∂α
Γ(α, x) = Γ(α)ψ(α) + lnx[Γ(α, x) − Γ(α)] +

xα

α2 2F2(α, α;α + 1, α + 1;−x).

Proposition 3. We take λ = 1 in (1.1) and, making use of Proposition 2 and related
considerations, expand the function

(2.22) Γ(s)ζ(s, a) − 1

s− 1
=

∞∑
n=0

Γ(s, n + a)

(n + a)s
+

∞∑
m=1

(−1)m

m!

Bm(a)

(m + s− 1)

about s = 1, and apply the defining series (1.2).

Corollary 3. Maintaining the free parameter λ, this follows from −
∫ x

1
[γ+ψ(a)]da =

γ(1 − x) − ln Γ(x), the corresponding expression similar to (1.10),

(2.23) − lnλ− γ − ψ(a) = e−λaΦ

(
1

eλ
, 1, a

)
+

∞∑
m=1

(−1)m

m!

Bm(a)

m
λm,

and the property
∫
Bm(a)da = Bm+1(a)/(m + 1). �

To illustrate Corollary 3, Figure 2 shows a plot of the natural logarithm of the
absolute value of the relative error in the value of ln Γ(7/4) versus N , the truncation
size of the sums therein. Now λ = π and π/2, and the reference value of ln Γ(7/4)
is computed from Mathematica c© V8.
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5 10 15 20 25 30 35 40 45 50 55 60
N

relative error

−80

−60

−40

−20

Figure 2. Plot of the natural logarithm of the absolute value of
the relative error in ln Γ(7/4) computed from Corollary 3.

Lemma 1. For (a)–(c), repeatedly integrate the generating function

(2.24)
∞∑

n=1

Bn(a)

n!
zn =

zeaz

ez − 1
− 1, |z| < 2π.

For (d), write

(2.25)

∞∑
n=0

Γ(0, n + a)

n + a
=

∞∑
n=0

1

n + a

∫ ∞

n+a

e−t dt

t
=

∞∑
n=0

1

n + a

∫ ∞

1

e−(n+a)v dv

v
.

Then interchange summation and integration and perform another change of vari-
able. �

Remark. As Γ(0, x) = −Ei(−x), where Ei is the exponential integral having many
integral representations, there are a multitude of ways of obtaining (1.17).

3. Discussion: Derivatives of the incomplete Gamma function

Derivatives of the incomplete Gamma function are important for the computa-
tional methods of [9], and they provide a starting point for many useful integrals.
Geddes et al. [12] investigated these derivatives, introducing a function T (m, a, z),
with Γ(a, z) = zT (2, a, z), m ≥ 1 an integer and initially |z| < 1, such that

(3.1a) Γ(1)(a, x) = xT (3, a, x) + lnx Γ(a, x),

(3.1b) Γ(2)(a, x) = ln2 x Γ(a, x) + 2x[lnx T (3, a, x) + T (4, a, x)],
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and more generally, with P i
j = i!/(i− j)!,

(3.2)

dmΓ(a, x)

dam
≡ Γ(m)(a, x) = lnm x Γ(a, x)

+ mx

m−1∑
i=0

Pm−1
i lnm−i−1 x T (3 + i, a, x).

The function T satisfies the derivative relations

(3.3a)
dT (m, a, z)

da
= ln zT (m, a, z) + (m− 1)T (m + 1, a, z)

and

(3.3b)
dT (m, a, z)

dz
= −1

z
[T (m− 1, a, z) + T (m, a, z)].

One form of T is [12, (37)],

(3.4)

T (m, a, z) = −Ress=−1

[(
− 1

s + 1

)m−1

Γ(a− 1 − s)zs

]

+

∞∑
i=0

(−1)iza+i−1

i!(−a− i)m−1
,

where a is neither zero or a negative integer. This can be obtained by expressing T
in terms of the Meijer G-function and then using a contour integral for the latter
function. Using [12, (38)], and the relation (a)i/(a + 1)i = a/(a + i), as we have
previously done, we may write

T (m, a, z) =
(−1)m−1

(m− 2)!

(
d

dt

)m−2 [
Γ(a− t)zt−1

]
t=0

(3.5) +(−1)m−1 z
a−1

am−1 m−1Fm−1(a, a, . . . , a; a + 1, a + 1, . . . , a + 1;−z).

Proposition 2 and like considerations are in accord with this result.
We note that Milgram [14] studied derivatives with respect to the order s of the

exponential integral function Es(z) = zs−1Γ(1 − s, z) by using the G-function and
contour integral representation.

4. Certain zeta functions and other integrals

Elsewhere we have considered second moment integrals of the Riemann zeta and
other functions [8]. The following concerns the integrals

(4.1) I(c) ≡
∫ ∞

−∞

ζ(c + it)

c + it
dt = −i

∫
Res=c

ζ(s)

s
ds,

for integer p ≥ 2,

(4.2) Ip(c) ≡
∫ ∞

−∞

ζ(c + it)

(c + it)p
dt = −i

∫
Res=c

ζ(s)

sp
ds,

(4.3) Ia(c) ≡
∫ ∞

−∞

η(c + it)

c + it
dt = −i

∫
Res=c

η(s)

s
ds,
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and

(4.4) IL(c) ≡
∫ ∞

−∞

Lic+it(x)

c + it
dt = −i

∫
Res=c

Lis(x)

s
ds.

Proposition 4. We have I(c) = −π for 0 < c < 1, and I(c) = π for c > 1,
Ip(c) = 0 for c > 1 and Ip(c) = −2π for 0 < c < 1, Ia(c = 0) = 2π and Ia(c) = π for
c > 0, and IL(c) = πx for |x| < 1, x ∈ R and c > 0 and IL(c) = −πx(1+x)/(1−x)
for c < 0.

Proof. These results may be developed with the aid of Perron’s formula ([3, p. 245],
or [15, p. 95]) one form of which is [10, p. 147]

(4.5)
1

2πi

∫
Res=σ

(x
n

)s ds

s
= θ(x− n),

where θ(x) is the step function taking the values 1, 1/2, and 0 as x > 0, x = 0, and
x < 0, respectively. The line of integration may be moved by including the poles
of the integrand. This may be seen by integrating over a rectangular contour with
corners at c ± iT and b ± iT . For the Hurwitz zeta function one has the growth
estimates [16, p. 276], with s = σ + it and 1/2 > δ > 0,

ζ(s, a) = O(1) for σ > 1 + δ,

= O(|t|1/2−σ) for σ ≤ δ,

= O(|t|1/2) for δ ≤ σ ≤ 1 − δ,

= O(|t|1−σ ln |t|) for 1 − δ ≤ σ ≤ 1 + δ,

(4.6) = O(|t|1/2 ln |t|) for − δ ≤ σ ≤ δ.

Further inequalities for ζa(1− s) =
∑∞

n=1 e
2nπia/n1−s are also given in [16]. Cases

of these may be used to show that the “top” and “bottom” contributions of the
rectangular contour of integration vanish as T → ∞. Then the Cauchy residue
theorem is applied. Example estimations along horizontal line segments include
the following, wherein we note the independence of the parameter a, and c1 and c2
are positive constants,∣∣∣∣∣

∫ δ

−δ

ζ(σ ± iT )

s
dσ

∣∣∣∣∣ ≤
∫ δ

−δ

|ζ(σ ± iT )|
s

dσ

≤ 1

T

∫ δ

−δ

|ζ(σ ± iT )|dσ ≤ c1
T

∫ δ

−δ

|T |1/2 ln |T |dσ = 2δ
c1

T 1/2
ln |T |

and ∣∣∣∣∣
∫ 1+δ

1−δ

ζ(σ ± iT )

s
dσ

∣∣∣∣∣ ≤
∫ 1+δ

1−δ

|ζ(σ ± iT )|
s

dσ

≤ 1

T

∫ 1+δ

1−δ

|ζ(σ ± iT )|dσ ≤ c2
T

∫ 1+δ

1−δ

|T |1−σ ln |T |dσ

≤ c2 lnT

T

∫ 1+δ

1−δ

|T |1−σdσ =
c2
T

(T δ − T−δ).

The interval [c, b] can then be appropriately decomposed with such contributions.
The relevant residues are the following. For η(s)/s, 1/2 at s = 0. For ζ(s)/s,

−1/2 at s = 0, being a case of ζ(0, a) = 1/2 − a, and 1 at s = 1. For Lis(x)/s,
x/(1 − x) at s = 0. For the latter we recall the series Li0(x) =

∑∞
k=1 x

k for
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|x| < 1, or alternatively that Li1(x) = − ln(1 − x) and the derivative property
dLis(x)/dx = Lis−1(x)/x.

So, for instance, for (4.1) with c > 1, the sum on n in (4.5) may be performed,

(4.7)
1

2πi

∫
Res=c

ζ(s)
ds

s
=

∞∑
n=1

θ(1 − n) =
1

2
.

This gives
∫
Res=c

ζ(s)(ds/s) = iπ. For c < 1 the contribution from the pole at s = 1
is subtracted, πi− 2πi = −iπ.

Similarly, for (4.4), when c < 0, the stated formula for IL(c) is obtained from

πx− 2πx

1 − x
= πx

(
x + 1

x− 1

)
.

For (4.2), we repeatedly divide (4.5) by x and integrate with respect to x. This
gives

(4.8)
1

2πi

∫
Res=σ

xs

ns

ds

sm+1
=

θ(x− n)

m!
lnm

(x
n

)
.

This relation follows by induction, and the base case is given by integration by
parts. In detail for that case,

1

2πi

∫
Res=σ

xs

ns

ds

s2
=

∫ [
d

dx
θ(x− n) lnx− δ(x− n) lnx

]
dx

= θ(x− n) ln(x/n),

wherein δ(x) = dθ(x)/dx is the Dirac delta function. Summing on n and then
putting x = 1 then yields, for c > 1,

1

2πi

∫
Res=c

ζ(s)
ds

sm+1
= 0.

Since Res[ζ(s)/sm+1]s=1 = 1, the stated result for 0 < c < 1 follows.

Remarks. In [15, p. 145], the “astonishing results” for n ∈ N+,

(4.9a)

∫ c+i∞

c−i∞

ζ(s)ns

s(s + 1)
ds = −iπ, 0 < c < 1

and

(4.9b)

∫ −c+i∞

−c−i∞

ζ(s)ns

s(s + 1)
ds = 0, 0 < c < 1,

are given. These integrals, as in Proposition 4, follow from Perron’s formula. For
instance, integrating (4.5) with respect to x gives

(4.10)
1

2πi

∫
Res=σ

x
(x
n

)s ds

s(s + 1)
= (x− n)θ(x− n).

The integration of the right side may be readily verified with the identity xδ(x) = 0.
When x = 1, summation over n in (4.10) then yields

1

2πi

∫
Res=c

ζ(s)ds

s(s + 1)
= 0, c > 1.

The line of integration may then be moved successively to the left of c = 1 and
c = 0, by accounting for the simple poles, to give the n = 1 cases of (4.9).
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This line of development may be continued. For instance, an integration of (4.10)
with respect to x now gives

(4.11)
1

2πi

∫
Res=σ

xs+2

ns

ds

s(s + 1)(s + 2)
=

1

2
(x− n)2θ(x− n).

More generally, we have

(4.12)
1

2πi

∫
Res=σ

xs+m

ns

ds

s(s + 1) · · · (s + m)
=

1

m!
(x− n)mθ(x− n),

provable by induction on nonnegative integer m. This result may then be applied
in a number of ways. �
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