Remote Access Mathematics of Computation
Green Open Access

Mathematics of Computation

ISSN 1088-6842(online) ISSN 0025-5718(print)

 
 

 

Kronrod extensions with multiple nodes of quadrature formulas for Fourier coefficients


Authors: Gradimir V. Milovanović and Miodrag M. Spalević
Journal: Math. Comp. 83 (2014), 1207-1231
MSC (2010): Primary 41A55; Secondary 65D30, 65D32
DOI: https://doi.org/10.1090/S0025-5718-2013-02761-5
Published electronically: August 28, 2013
MathSciNet review: 3167456
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We continue with analyzing quadrature formulas of high degree of precision for computing the Fourier coefficients in expansions of functions with respect to a system of orthogonal polynomials, started recently by Bojanov and Petrova [Quadrature formulae for Fourier coefficients, J. Comput. Appl. Math. 231 (2009), 378-391] and we extend their results. Construction of new Gaussian quadrature formulas for the Fourier coefficients of a function, based on the values of the function and its derivatives, is considered. We prove the existence and uniqueness of Kronrod extensions with multiple nodes of standard Gaussian quadrature formulas with multiple nodes for several weight functions, in order to construct some new generalizations of quadrature formulas for the Fourier coefficients. For the quadrature formulas for the Fourier coefficients based on the zeros of the corresponding orthogonal polynomials we construct Kronrod extensions with multiple nodes and highest algebraic degree of precision. For this very desirable kind of extension there do not exist any results in the theory of standard quadrature formulas.


References [Enhancements On Off] (What's this?)

  • [1] S. Bernstein, Sur les polynomes orthogonaux relatifs à un segment fini, J. Math. Pures Appl. 9 (1930), 127-177.
  • [2] Borislav Bojanov, On a quadrature formula of Micchelli and Rivlin, J. Comput. Appl. Math. 70 (1996), no. 2, 349-356. MR 1399878 (97d:41031), https://doi.org/10.1016/0377-0427(95)00206-5
  • [3] Borislav Bojanov and Guergana Petrova, Quadrature formulas for Fourier coefficients, J. Comput. Appl. Math. 231 (2009), no. 1, 378-391. MR 2532677 (2010e:65031), https://doi.org/10.1016/j.cam.2009.02.097
  • [4] D. Calvetti, G. H. Golub, W. B. Gragg, and L. Reichel, Computation of Gauss-Kronrod quadrature rules, Math. Comp. 69 (2000), no. 231, 1035-1052. MR 1677474 (2000j:65035), https://doi.org/10.1090/S0025-5718-00-01174-1
  • [5] Lyubomir Čakalov, General quadrature formulas of Gaussian type, Bŭlgar. Akad. Nauk. Izv. Mat. Inst. 1 (1954), no. 2, 67-84 (Bulgarian, with Russian summary). MR 0069232 (16,1005d)
  • [6] Sven Ehrich, On stratified extensions of Gauss-Laguerre and Gauss-Hermite quadrature formulas, Proceedings of the 9th International Congress on Computational and Applied Mathematics (Leuven, 2000), 2002, pp. 291-299. MR 1934445 (2003g:65027), https://doi.org/10.1016/S0377-0427(01)00407-1
  • [7] H. Engels, Numerical quadrature and cubature, Academic Press Inc. [Harcourt Brace Jovanovich Publishers], London, 1980. Computational Mathematics and Applications. MR 587486 (83g:65002)
  • [8] Walter Gautschi, Gauss-Kronrod quadrature--a survey, Numerical methods and approximation theory, III (Niš, 1987) Univ. Niš, Niš, 1988, pp. 39-66. MR 960329 (89k:41035)
  • [9] Walter Gautschi, On the remainder term for analytic functions of Gauss-Lobatto and Gauss-Radau quadratures, Proceedings of the U.S.-Western Europe Regional Conference on Padé Approximants and Related Topics (Boulder, CO, 1988), 1991, pp. 209-226. MR 1113924 (93a:41071a), https://doi.org/10.1216/rmjm/1181073004
  • [10] Walter Gautschi, Orthogonal polynomials: computation and approximation, Numerical Mathematics and Scientific Computation, Oxford University Press, New York, 2004. Oxford Science Publications. MR 2061539 (2005e:42001)
  • [11] Walter Gautschi, A historical note on Gauss-Kronrod quadrature, Numer. Math. 100 (2005), no. 3, 483-484. MR 2195449, https://doi.org/10.1007/s00211-005-0592-7
  • [12] Walter Gautschi and Gradimir V. Milovanović, $ s$-orthogonality and construction of Gauss-Turán-type quadrature formulae, J. Comput. Appl. Math. 86 (1997), no. 1, 205-218. Special issue dedicated to William B. Gragg (Monterey, CA, 1996). MR 1491435 (99a:65030), https://doi.org/10.1016/S0377-0427(97)00156-8
  • [13] Walter Gautschi and Sotorios E. Notaris, Gauss-Kronrod quadrature formulae for weight functions of Bernstein-Szegő type, J. Comput. Appl. Math. 25 (1989), no. 2, 199-224. MR 988057 (90d:65045), https://doi.org/10.1016/0377-0427(89)90047-2
  • [14] A. Ghizzetti and A. Ossicini, Quadrature formulae, Academic Press, New York, 1970. MR 0269116 (42 #4012)
  • [15] Aldo Ghizzetti and Alessandro Ossicini, Sull'esistenza e unicità delle formule di quadratura gaussiane, Rend. Mat. (6) 8 (1975), 1-15 (Italian, with English summary). Collection of articles dedicated to Mauro Picone on the occasion of his ninetieth birthday. MR 0380216 (52 #1116)
  • [16] G. H. Golub and J. Kautský, Calculation of Gauss quadratures with multiple free and fixed knots, Numer. Math. 41 (1983), no. 2, 147-163. MR 703119 (84i:65030), https://doi.org/10.1007/BF01390210
  • [17] Laura Gori and Charles A. Micchelli, On weight functions which admit explicit Gauss-Turán quadrature formulas, Math. Comp. 65 (1996), no. 216, 1567-1581. MR 1361808 (97c:41034), https://doi.org/10.1090/S0025-5718-96-00769-7
  • [18] L. Gori, M. L. Lo Cascio, and G. V. Milovanović, The $ \sigma $-orthogonal polynomials: a method of construction, Orthogonal polynomials and their applications (Erice, 1990) IMACS Ann. Comput. Appl. Math., vol. 9, Baltzer, Basel, 1991, pp. 281-285. MR 1270246
  • [19] D. K. Kahaner and G. Monegato, Nonexistence of extended Gauss-Laguerre and Gauss-Hermite quadrature rules with positive weights, Z. Angew. Math. Phys. 29 (1978), no. 6, 983-986 (English, with German summary). MR 523866 (80d:65034), https://doi.org/10.1007/BF01590820
  • [20] A. S. Kronrod, Integration with control of accuracy, Soviet Physics Dokl. 9 (1964), 17-19. MR 0199960 (33 #8100)
  • [21] András Kroó and Franz Peherstorfer, Asymptotic representation of $ L_p$-minimal polynomials, $ 1<p<\infty $, Constr. Approx. 25 (2007), no. 1, 29-39. MR 2263735 (2007i:41005), https://doi.org/10.1007/s00365-006-0628-5
  • [22] Dirk P. Laurie, Anti-Gaussian quadrature formulas, Math. Comp. 65 (1996), no. 214, 739-747. MR 1333318 (96m:65026), https://doi.org/10.1090/S0025-5718-96-00713-2
  • [23] Dirk P. Laurie, Calculation of Gauss-Kronrod quadrature rules, Math. Comp. 66 (1997), no. 219, 1133-1145. MR 1422788 (98m:65030), https://doi.org/10.1090/S0025-5718-97-00861-2
  • [24] S. Li, Kronrod extension of Turán formula, Studia Sci. Math. Hungar. 29 (1994), no. 1-2, 71-83. MR 1283377 (95j:41046)
  • [25] Gradimir V. Milovanović, Quadratures with multiple nodes, power orthogonality, and moment-preserving spline approximation, J. Comput. Appl. Math. 127 (2001), no. 1-2, 267-286. Numerical analysis 2000, Vol. V, Quadrature and orthogonal polynomials. MR 1808578 (2002e:65039), https://doi.org/10.1016/S0377-0427(00)00500-8
  • [26] Gradimir V. Milovanović and Miodrag M. Spalević, Error bounds for Gauss-Turán quadrature formulae of analytic functions, Math. Comp. 72 (2003), no. 244, 1855-1872 (electronic). MR 1986808 (2004c:41068), https://doi.org/10.1090/S0025-5718-03-01544-8
  • [27] G. V. Milovanović and M. M. Spalević, An error expansion for some Gauss-Turán quadratures and $ L^1$-estimates of the remainder term, BIT 45 (2005), no. 1, 117-136. MR 2164228 (2006e:41058), https://doi.org/10.1007/s10543-005-2643-y
  • [28] G. V. Milovanović, M. M. Spalević, and A. S. Cvetković, Calculation of Gaussian-type quadratures with multiple nodes, Math. Comput. Modelling 39 (2004), no. 2-3, 325-347. MR 2037399 (2005g:65041), https://doi.org/10.1016/S0895-7177(04)90014-3
  • [29] Gradimir V. Milovanović, Miodrag M. Spalević, and Miroslav S. Pranić, Maximum of the modulus of kernels in Gauss-Turán quadratures, Math. Comp. 77 (2008), no. 262, 985-994. MR 2373188 (2008k:41042), https://doi.org/10.1090/S0025-5718-07-02032-7
  • [30] Gradimir V. Milovanović, Miodrag M. Spalević, and Miroslav S. Pranić, Error estimates for Gauss-Turán quadratures and their Kronrod extensions, IMA J. Numer. Anal. 29 (2009), no. 3, 486-507. MR 2520156 (2010e:65040), https://doi.org/10.1093/imanum/drm040
  • [31] Gradimir V. Milovanović, Miodrag M. Spalević, and Miroslav S. Pranić, Bounds of the error of Gauss-Turán-type quadratures. II, Appl. Numer. Math. 60 (2010), no. 1-2, 1-9. MR 2566073 (2011a:65059), https://doi.org/10.1016/j.apnum.2009.08.002
  • [32] Giovanni Monegato, Stieltjes polynomials and related quadrature rules, SIAM Rev. 24 (1982), no. 2, 137-158. MR 652464 (83d:65067), https://doi.org/10.1137/1024039
  • [33] Giovanni Monegato, An overview of the computational aspects of Kronrod quadrature rules, Numer. Algorithms 26 (2001), no. 2, 173-196. MR 1829797 (2002a:65051), https://doi.org/10.1023/A:1016640617732
  • [34] A. Ossicini and F. Rosati, Funzioni caratteristiche nelle formule di quadratura gaussiane con nodi multipli, Boll. Un. Mat. Ital. (4) 11 (1975), no. 3, suppl., 224-237 (Italian, with French summary). Collection of articles dedicated to Giovanni Sansone on the occasion of his eighty-fifth birthday. MR 0408212 (53 #11977)
  • [35] Franz Peherstorfer, Gauss-Turán quadrature formulas: asymptotics of weights, SIAM J. Numer. Anal. 47 (2009), no. 4, 2638-2659. MR 2525614 (2011d:41048), https://doi.org/10.1137/070695794
  • [36] Franz Peherstorfer and Knut Petras, Ultraspherical Gauss-Kronrod quadrature is not possible for $ \lambda >3$, SIAM J. Numer. Anal. 37 (2000), no. 3, 927-948 (electronic). MR 1749243 (2001g:33010), https://doi.org/10.1137/S0036142998327744
  • [37] Franz Peherstorfer and Knut Petras, Stieltjes polynomials and Gauss-Kronrod quadrature for Jacobi weight functions, Numer. Math. 95 (2003), no. 4, 689-706. MR 2013124 (2004j:33010), https://doi.org/10.1007/s00211-002-0412-2
  • [38] Tiberiu Popoviciu, Sur une généralisation de la formule d'intégration numérique de Gauss, Acad. R. P. Romîne. Fil. Iaşi. Stud. Cerc. Şti. 6 (1955), 29-57 (Romanian, with Russian and French summaries). MR 0085604 (19,64h)
  • [39] Miodrag M. Spalević, On generalized averaged Gaussian formulas, Math. Comp. 76 (2007), no. 259, 1483-1492 (electronic). MR 2299784 (2008g:65047), https://doi.org/10.1090/S0025-5718-07-01975-8
  • [40] Miodrag M. Spalević, A note on generalized averaged Gaussian formulas, Numer. Algorithms 46 (2007), no. 3, 253-264. MR 2374184 (2008i:65045), https://doi.org/10.1007/s11075-007-9137-8
  • [41] Y. G. Shi, Generalized Gaussian Kronrod-Turán quadrature formulas, Acta Sci. Math. (Szeged) 62 (1996), no. 1-2, 175-185. MR 1412926 (97e:41068)
  • [42] Ying Guang Shi, Christoffel type functions for $ m$-orthogonal polynomials, J. Approx. Theory 137 (2005), no. 1, 57-88. MR 2179623 (2006j:42038), https://doi.org/10.1016/j.jat.2005.07.007
  • [43] Ying Guang Shi and Guoliang Xu, Construction of $ \sigma $-orthogonal polynomials and Gaussian quadrature formulas, Adv. Comput. Math. 27 (2007), no. 1, 79-94. MR 2317922 (2008c:65069), https://doi.org/10.1007/s10444-007-9033-8
  • [44] P. Turán, On the theory of the mechanical quadrature, Acta Sci. Math. Szeged 12 (1950), Leopoldo Fejer et Frederico Riesz LXX annos natis dedicatus, Pars A, 30-37. MR 0036797 (12,164b)
  • [45] Shijun Yang, On a quadrature formula of Gori and Micchelli, J. Comput. Appl. Math. 176 (2005), no. 1, 35-43. MR 2108100 (2005k:41093), https://doi.org/10.1016/j.cam.2004.07.031

Similar Articles

Retrieve articles in Mathematics of Computation with MSC (2010): 41A55, 65D30, 65D32

Retrieve articles in all journals with MSC (2010): 41A55, 65D30, 65D32


Additional Information

Gradimir V. Milovanović
Affiliation: Mathematical Institute, Serbian Academy of Sciences and Arts, Kneza Mihaila 36, 11000 Belgrade, Serbia
Email: gvm@mi.sanu.ac.rs

Miodrag M. Spalević
Affiliation: Department of Mathematics, University of Beograd, Faculty of Mechanical Engineering, Kraljice Marije 16, 11120 Belgrade 35, Serbia
Email: mspalevic@mas.bg.ac.rs

DOI: https://doi.org/10.1090/S0025-5718-2013-02761-5
Keywords: Numerical integration, orthogonal polynomials, Gaussian quadratures, Fourier coefficients
Received by editor(s): February 1, 2012
Received by editor(s) in revised form: August 9, 2012, and September 4, 2012
Published electronically: August 28, 2013
Additional Notes: This work was supported in part by the Serbian Ministry of Education and Science (Research Projects: “Approximation of integral and differential operators and applications” (#174015) & “Methods of numerical and nonlinear analysis with applications” (#174002)).
Dedicated: Dedicated to the Memory of Professor Borislav Bojanov (1944–2009)
Article copyright: © Copyright 2013 American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.

American Mathematical Society