Remote Access Mathematics of Computation
Green Open Access

Mathematics of Computation

ISSN 1088-6842(online) ISSN 0025-5718(print)



Constructing class invariants

Author: Aristides Kontogeorgis
Journal: Math. Comp. 83 (2014), 1477-1488
MSC (2010): Primary 11R29, 11R37, 11Y40; Secondary 11R34
Published electronically: September 4, 2013
MathSciNet review: 3167467
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Shimura reciprocity law allows us to verify that a modular function gives rise to a class invariant. Here we present a new method based on Shimura reciprocity that allows us not only to verify but to find new class invariants from a modular function of level $ N$.

References [Enhancements On Off] (What's this?)

  • [1] Wieb Bosma, John Cannon, and Catherine Playoust, The Magma algebra system. I. The user language, J. Symbolic Comput. 24 (1997), no. 3-4, 235-265. Computational algebra and number theory (London, 1993). MR 1484478,
  • [2] Keith Conrad, Galois Descent Expository article on authors website
  • [3] A. Fröhlich and M. J. Taylor, Algebraic number theory, Cambridge Studies in Advanced Mathematics, vol. 27, Cambridge University Press, Cambridge, 1993. MR 1215934 (94d:11078)
  • [4] Marc Hindry and Joseph H. Silverman, Diophantine geometry, An introduction, Graduate Texts in Mathematics, vol. 201, Springer-Verlag, New York, 2000. MR 1745599 (2001e:11058)
  • [5] Alice Gee, Class invariants by Shimura's reciprocity law, J. Théor. Nombres Bordeaux 11 (1999), no. 1, 45-72 (English, with English and French summaries). Les XXèmes Journées Arithmétiques (Limoges, 1997). MR 1730432 (2000i:11171)
  • [6] Alice Gee, Class Fields by Shimura Reciprocity, Ph.D. thesis, Leiden University available online at
  • [7] Alice Gee and Peter Stevenhagen, Generating class fields using Shimura reciprocity, Algorithmic number theory (Portland, OR, 1998) Lecture Notes in Comput. Sci., vol. 1423, Springer, Berlin, 1998, pp. 441-453. MR 1726092 (2000m:11112),
  • [8] S. P. Glasby and R. B. Howlett, Writing representations over minimal fields, Comm. Algebra 25 (1997), no. 6, 1703-1711. MR 1446124 (98c:20019),
  • [9] William B. Hart, Schläfli modular equations for generalized Weber functions, Ramanujan J. 15 (2008), no. 3, 435-468. MR 2390280 (2009d:11069),
  • [10] Gregor Kemper and Allan Steel, Some algorithms in invariant theory of finite groups, (Essen, 1997) Progr. Math., vol. 173, Birkhäuser, Basel, 1999, pp. 267-285. MR 1714617 (2000j:13009)
  • [11] Elisavet Konstantinou, Aristides Kontogeorgis, Yannis C. Stamatiou, and Christos Zaroliagis, Generating prime order elliptic curves: difficulties and efficiency considerations, Information security and cryptology--ICISC 2004, Lecture Notes in Comput. Sci., vol. 3506, Springer, Berlin, 2005, pp. 261-278. MR 2214104 (2007a:94194),
  • [12] Elisavet Konstantinou and Aristides Kontogeorgis, Computing polynomials of the Ramanujan $ t_n$ class invariants, Canad. Math. Bull. 52 (2009), no. 4, 583-597. MR 2567152 (2011a:11200),
  • [13] Elisavet Konstantinou and Aristides Kontogeorgis, Ramanujan's class invariants and their use in elliptic curve cryptography, Comput. Math. Appl. 59 (2010), no. 8, 2901-2917. MR 2607997 (2010m:94101),
  • [14] Elisavet Konstantinou and Aristides Kontogeorgis, Ramanujan invariants for discriminants congruent to $ 5\pmod {24}$, Int. J. Number Theory 8 (2012), no. 1, 265-287. MR 2887894,
  • [15] Claudio Procesi, A primer of invariant theory, Brandeis Lecture Notes, vol. 1, Brandeis University, Waltham, MA, 1982. Notes by Giandomenico Boffi. MR 743262 (86d:14045)
  • [16] Srinivasa Ramanujan, Notebooks. Vols. 1, 2, Tata Institute of Fundamental Research, Bombay, 1957. MR 0099904 (20 #6340)
  • [17] Goro Shimura, Introduction to the arithmetic theory of automorphic functions, Publications of the Mathematical Society of Japan, vol. 11, Princeton University Press, Princeton, NJ, 1994. Reprint of the 1971 original; Kanô Memorial Lectures, 1. MR 1291394 (95e:11048)
  • [18] Joseph H. Silverman, Advanced topics in the arithmetic of elliptic curves, Graduate Texts in Mathematics, vol. 151, Springer-Verlag, New York, 1994. MR 1312368 (96b:11074)
  • [19] Peter Stevenhagen, Hilbert's 12th problem, complex multiplication and Shimura reciprocity, Class field theory--its centenary and prospect (Tokyo, 1998) Adv. Stud. Pure Math., vol. 30, Math. Soc. Japan, Tokyo, 2001, pp. 161-176. MR 1846457 (2002i:11110)
  • [20] Marc Hindry and Joseph H. Silverman, Diophantine geometry, Graduate Texts in Mathematics, vol. 201, Springer-Verlag, New York, 2000. An introduction. MR 1745599 (2001e:11058)
  • [21] Noriko Yui and Don Zagier, On the singular values of Weber modular functions, Math. Comp. 66 (1997), no. 220, 1645-1662. MR 1415803 (99i:11046),
  • [22] H. Weber, Lehrbuch der Algebra, Band III, 2nd edition, Chelsea reprint, original edition 1908.

Similar Articles

Retrieve articles in Mathematics of Computation with MSC (2010): 11R29, 11R37, 11Y40, 11R34

Retrieve articles in all journals with MSC (2010): 11R29, 11R37, 11Y40, 11R34

Additional Information

Aristides Kontogeorgis
Affiliation: University of Athens, Panepistimioupolis 15784, Athens, Greece

Received by editor(s): June 7, 2012
Received by editor(s) in revised form: October 30, 2012, and November 14, 2012
Published electronically: September 4, 2013
Additional Notes: This research has been co-financed by the European Union (European Social Fund - ESF) and Greek national funds through the Operational Program “Education and Lifelong Learning” of the National Strategic Reference Framework (NSRF) - Research Funding Program: THALES: Reinforcement of the interdisciplinary and/or inter-institutional research and innovation
Article copyright: © Copyright 2013 American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.

American Mathematical Society