Remote Access Mathematics of Computation
Green Open Access

Mathematics of Computation

ISSN 1088-6842(online) ISSN 0025-5718(print)

 
 

 

Parallel, non-iterative, multi-physics domain decomposition methods for time-dependent Stokes-Darcy systems


Authors: Yanzhao Cao, Max Gunzburger, Xiaoming He and Xiaoming Wang
Journal: Math. Comp. 83 (2014), 1617-1644
MSC (2010): Primary 65M55, 65M12, 65M15, 65M60, 35M10, 35Q35, 76D07, 76S05
DOI: https://doi.org/10.1090/S0025-5718-2014-02779-8
Published electronically: February 3, 2014
MathSciNet review: 3194124
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Two parallel, non-iterative, multi-physics, domain decomposition methods are proposed to solve a coupled time-dependent Stokes-Darcy system with the Beavers-Joseph-Saffman-Jones interface condition. For both methods, spatial discretization is effected using finite element methods. The backward Euler method and a three-step backward differentiation method are used for the temporal discretization. Results obtained at previous time steps are used to approximate the coupling information on the interface between the Darcy and Stokes subdomains at the current time step. Hence, at each time step, only a single Stokes and a single Darcy problem need be solved; as these are uncoupled, they can be solved in parallel. The unconditional stability and convergence of the first method is proved and also illustrated through numerical experiments. The improved temporal convergence and unconditional stability of the second method is also illustrated through numerical experiments.


References [Enhancements On Off] (What's this?)

  • [1] M. Amara, D. Capatina, and L. Lizaik, Coupling of Darcy-Forchheimer and compressible Navier-Stokes equations with heat transfer, SIAM J. Sci. Comput. 31 (2008/09), no. 2, 1470-1499. MR 2486839 (2010g:65141), https://doi.org/10.1137/070709517
  • [2] Todd Arbogast and Dana S. Brunson, A computational method for approximating a Darcy-Stokes system governing a vuggy porous medium, Comput. Geosci. 11 (2007), no. 3, 207-218. MR 2344200 (2009b:76155), https://doi.org/10.1007/s10596-007-9043-0
  • [3] Ivo Babuška and Gabriel N. Gatica, A residual-based a posteriori error estimator for the Stokes-Darcy coupled problem, SIAM J. Numer. Anal. 48 (2010), no. 2, 498-523. MR 2646106 (2011e:65254), https://doi.org/10.1137/080727646
  • [4] Lori Badea, Marco Discacciati, and Alfio Quarteroni, Numerical analysis of the Navier-Stokes/Darcy coupling, Numer. Math. 115 (2010), no. 2, 195-227. MR 2606960 (2011f:76158), https://doi.org/10.1007/s00211-009-0279-6
  • [5] Santiago Badia and Ramon Codina, Unified stabilized finite element formulations for the Stokes and the Darcy problems, SIAM J. Numer. Anal. 47 (2009), no. 3, 1971-2000. MR 2519591 (2010h:65216), https://doi.org/10.1137/08072632X
  • [6] Garth A. Baker, Vassilios A. Dougalis, and Ohannes A. Karakashian, On a higher order accurate fully discrete Galerkin approximation to the Navier-Stokes equations, Math. Comp. 39 (1982), no. 160, 339-375. MR 669634 (84h:65096), https://doi.org/10.2307/2007319
  • [7] Christine Bernardi, Frédéric Hecht, and Fatma Zohra Nouri, A new finite-element discretization of the Stokes problem coupled with the Darcy equations, IMA J. Numer. Anal. 30 (2010), no. 1, 61-93. MR 2580547 (2011a:65388), https://doi.org/10.1093/imanum/drn054
  • [8] Christine Bernardi, Frédéric Hecht, and Olivier Pironneau, Coupling Darcy and Stokes equations for porous media with cracks, M2AN Math. Model. Numer. Anal. 39 (2005), no. 1, 7-35. MR 2136198 (2006a:76107), https://doi.org/10.1051/m2an:2005007
  • [9] Christine Bernardi, Tomás Chacón Rebollo, Frédéric Hecht, and Zoubida Mghazli, Mortar finite element discretization of a model coupling Darcy and Stokes equations, M2AN Math. Model. Numer. Anal. 42 (2008), no. 3, 375-410. MR 2423791 (2009d:65162), https://doi.org/10.1051/m2an:2008009
  • [10] Yassine Boubendir and Svetlana Tlupova, Stokes-Darcy boundary integral solutions using preconditioners, J. Comput. Phys. 228 (2009), no. 23, 8627-8641. MR 2558769 (2011d:65335), https://doi.org/10.1016/j.jcp.2009.08.014
  • [11] James H. Bramble and J. Thomas King, A finite element method for interface problems in domains with smooth boundaries and interfaces, Adv. Comput. Math. 6 (1996), no. 2, 109-138 (1997). MR 1431789 (98e:65094), https://doi.org/10.1007/BF02127700
  • [12] J. H. Bramble, J. E. Pasciak, and A. H. Schatz, The construction of preconditioners for elliptic problems by substructuring. I, Math. Comp. 47 (1986), no. 175, 103-134. MR 842125 (87m:65174), https://doi.org/10.2307/2008084
  • [13] Susanne C. Brenner and L. Ridgway Scott, The mathematical theory of finite element methods, 3rd ed., Texts in Applied Mathematics, vol. 15, Springer, New York, 2008. MR 2373954 (2008m:65001)
  • [14] Erik Burman and Peter Hansbo, Stabilized Crouzeix-Raviart element for the Darcy-Stokes problem, Numer. Methods Partial Differential Equations 21 (2005), no. 5, 986-997. MR 2154230 (2006i:65190), https://doi.org/10.1002/num.20076
  • [15] Erik Burman and Peter Hansbo, A unified stabilized method for Stokes' and Darcy's equations, J. Comput. Appl. Math. 198 (2007), no. 1, 35-51. MR 2250387 (2007i:65076), https://doi.org/10.1016/j.cam.2005.11.022
  • [16] Mingchao Cai, Mo Mu, and Jinchao Xu, Numerical solution to a mixed Navier-Stokes/Darcy model by the two-grid approach, SIAM J. Numer. Anal. 47 (2009), no. 5, 3325-3338. MR 2551196 (2010j:65226), https://doi.org/10.1137/080721868
  • [17] Mingchao Cai, Mo Mu, and Jinchao Xu, Preconditioning techniques for a mixed Stokes/Darcy model in porous media applications, J. Comput. Appl. Math. 233 (2009), no. 2, 346-355. MR 2568530 (2010j:65046), https://doi.org/10.1016/j.cam.2009.07.029
  • [18] Xiao-Chuan Cai, Multiplicative Schwarz methods for parabolic problems, Iterative methods in numerical linear algebra (Copper Mountain Resort, CO, 1992). SIAM J. Sci. Comput. 15 (1994), no. 3, 587-603. MR 1273154 (95c:65178), https://doi.org/10.1137/0915039
  • [19] Yanzhao Cao, Max Gunzburger, Xiaoming He, and Xiaoming Wang, Robin-Robin domain decomposition methods for the steady-state Stokes-Darcy system with the Beavers-Joseph interface condition, Numer. Math. 117 (2011), no. 4, 601-629. MR 2776912 (2012g:65253), https://doi.org/10.1007/s00211-011-0361-8
  • [20] Y. Cao, M. Gunzburger, X. Hu, F. Hua, X. Wang, and W. Zhao, Finite element approximations for Stokes-Darcy flow with Beavers-Joseph interface conditions, SIAM. J. Numer. Anal. 47 (2010), no. 6, 4239-4256. MR 2585186 (2011b:65220)
  • [21] Yanzhao Cao, Max Gunzburger, Fei Hua, and Xiaoming Wang, Coupled Stokes-Darcy model with Beavers-Joseph interface boundary condition, Commun. Math. Sci. 8 (2010), no. 1, 1-25. MR 2655899 (2011c:35438)
  • [22] A. Çeşmelioğlu and B. Rivière, Analysis of time-dependent Navier-Stokes flow coupled with Darcy flow, J. Numer. Math. 16 (2008), no. 4, 249-280. MR 2493168 (2009m:35375), https://doi.org/10.1515/JNUM.2008.012
  • [23] Ayçıl Çeşmelioğlu and Béatrice Rivière, Primal discontinuous Galerkin methods for time-dependent coupled surface and subsurface flow, J. Sci. Comput. 40 (2009), no. 1-3, 115-140. MR 2511730 (2010f:65185), https://doi.org/10.1007/s10915-009-9274-4
  • [24] P. Chatzipantelidis, R. D. Lazarov, V. Thomée, and L. B. Wahlbin, Parabolic finite element equations in nonconvex polygonal domains, BIT 46 (2006), no. suppl., S113-S143. MR 2283311 (2007m:65084), https://doi.org/10.1007/s10543-006-0087-7
  • [25] Nan Chen, Max Gunzburger, and Xiaoming Wang, Asymptotic analysis of the differences between the Stokes-Darcy system with different interface conditions and the Stokes-Brinkman system, J. Math. Anal. Appl. 368 (2010), no. 2, 658-676. MR 2643831 (2011c:35395), https://doi.org/10.1016/j.jmaa.2010.02.022
  • [26] Wenbin Chen, Puying Chen, Max Gunzburger, and Ningning Yan, Superconvergence analysis of FEMs for the Stokes-Darcy system, Math. Methods Appl. Sci. 33 (2010), no. 13, 1605-1617. MR 2680670 (2011h:76072), https://doi.org/10.1002/mma.1279
  • [27] Wenbin Chen, Max Gunzburger, Fei Hua, and Xiaoming Wang, A parallel Robin-Robin domain decomposition method for the Stokes-Darcy system, SIAM J. Numer. Anal. 49 (2011), no. 3, 1064-1084. MR 2812558 (2012h:65294), https://doi.org/10.1137/080740556
  • [28] Yumei Chen, Feiteng Huang, and Xiaoping Xie, $ H(\rm div)$ conforming finite element methods for the coupled Stokes and Darcy problem, J. Comput. Appl. Math. 235 (2011), no. 15, 4337-4349. MR 2802009 (2012e:65264), https://doi.org/10.1016/j.cam.2011.03.023
  • [29] Zhiming Chen and Jun Zou, Finite element methods and their convergence for elliptic and parabolic interface problems, Numer. Math. 79 (1998), no. 2, 175-202. MR 1622502 (99d:65313), https://doi.org/10.1007/s002110050336
  • [30] Prince Chidyagwai and Béatrice Rivière, On the solution of the coupled Navier-Stokes and Darcy equations, Comput. Methods Appl. Mech. Engrg. 198 (2009), no. 47-48, 3806-3820. MR 2557499 (2010j:76038), https://doi.org/10.1016/j.cma.2009.08.012
  • [31] Philippe G. Ciarlet, The finite element method for elliptic problems, North-Holland Publishing Co., Amsterdam, 1978. Studies in Mathematics and its Applications, Vol. 4. MR 0520174 (58 #25001)
  • [32] Ming Cui and Ningning Yan, A posteriori error estimate for the Stokes-Darcy system, Math. Methods Appl. Sci. 34 (2011), no. 9, 1050-1064. MR 2829467 (2012e:76124), https://doi.org/10.1002/mma.1422
  • [33] Mark C. Curran, An iterative finite-element collocation method for parabolic problems using domain decomposition, Domain decomposition methods in science and engineering (Como, 1992), Contemp. Math., vol. 157, Amer. Math. Soc., Providence, RI, 1994, pp. 245-253. MR 1262624, https://doi.org/10.1090/conm/157/01424
  • [34] Carlo D'Angelo and Paolo Zunino, Robust numerical approximation of coupled Stokes' and Darcy's flows applied to vascular hemodynamics and biochemical transport, ESAIM Math. Model. Numer. Anal. 45 (2011), no. 3, 447-476. MR 2804646 (2012d:76077), https://doi.org/10.1051/m2an/2010062
  • [35] Daoud S. Daoud and Bruce A. Wade, A two-stage multi-splitting method for non-overlapping domain decomposition for parabolic equations, Domain decomposition methods in sciences and engineering (Chiba, 1999), DDM.org, Augsburg, 2001, pp. 101-108 (electronic). MR 1827527
  • [36] Clint Dawson, Analysis of discontinuous finite element methods for ground water/surface water coupling, SIAM J. Numer. Anal. 44 (2006), no. 4, 1375-1404. MR 2257109 (2007g:76129), https://doi.org/10.1137/050639405
  • [37] Clint N. Dawson, Qiang Du, and Todd F. Dupont, A finite difference domain decomposition algorithm for numerical solution of the heat equation, Math. Comp. 57 (1991), no. 195, 63-71. MR 1079011 (91m:65254), https://doi.org/10.2307/2938663
  • [38] Clint N. Dawson and Todd F. Dupont, Explicit/implicit conservative Galerkin domain decomposition procedures for parabolic problems, Math. Comp. 58 (1992), no. 197, 21-34. MR 1106964 (92h:65183), https://doi.org/10.2307/2153018
  • [39] Clint N. Dawson and Todd F. Dupont, Explicit/implicit, conservative domain decomposition procedures for parabolic problems based on block-centered finite differences, SIAM J. Numer. Anal. 31 (1994), no. 4, 1045-1061. MR 1286216 (95c:65148), https://doi.org/10.1137/0731055
  • [40] M. Discacciati, Domain decomposition methods for the coupling of surface and groundwater flows, Ph.D. thesis, Ecole Polytechnique Fédérale de Lausanne, Switzerland, 2004.
  • [41] Marco Discacciati, Iterative methods for Stokes/Darcy coupling, Domain decomposition methods in science and engineering, Lect. Notes Comput. Sci. Eng., vol. 40, Springer, Berlin, 2005, pp. 563-570. MR 2236665, https://doi.org/10.1007/3-540-26825-1_59
  • [42] Marco Discacciati, Edie Miglio, and Alfio Quarteroni, Mathematical and numerical models for coupling surface and groundwater flows, 19th Dundee Biennial Conference on Numerical Analysis (2001). Appl. Numer. Math. 43 (2002), no. 1-2, 57-74. MR 1936102 (2003h:76087), https://doi.org/10.1016/S0168-9274(02)00125-3
  • [43] M. Discacciati and A. Quarteroni, Analysis of a domain decomposition method for the coupling of Stokes and Darcy equations, Numerical mathematics and advanced applications, Springer Italia, Milan, 2003, pp. 3-20. MR 2360703 (2008i:65288)
  • [44] Marco Discacciati and Alfio Quarteroni, Convergence analysis of a subdomain iterative method for the finite element approximation of the coupling of Stokes and Darcy equations, Comput. Vis. Sci. 6 (2004), no. 2-3, 93-103. MR 2061270 (2005e:65142), https://doi.org/10.1007/s00791-003-0113-0
  • [45] Marco Discacciati, Alfio Quarteroni, and Alberto Valli, Robin-Robin domain decomposition methods for the Stokes-Darcy coupling, SIAM J. Numer. Anal. 45 (2007), no. 3, 1246-1268 (electronic). MR 2318811 (2008e:65390), https://doi.org/10.1137/06065091X
  • [46] Jim Douglas Jr. and Todd Dupont, Galerkin methods for parabolic equations, SIAM J. Numer. Anal. 7 (1970), 575-626. MR 0277126 (43 #2863)
  • [47] Maksymilian Dryja, Substructuring methods for parabolic problems, Partial Differential Equations (Moscow, 1990) SIAM, Philadelphia, PA, 1991, pp. 264-271. MR 1106468 (92a:65326)
  • [48] Maksymilian Dryja and Xuemin Tu, A domain decomposition discretization of parabolic problems, Numer. Math. 107 (2007), no. 4, 625-640. MR 2342646 (2008i:65205), https://doi.org/10.1007/s00211-007-0103-0
  • [49] V. J. Ervin, E. W. Jenkins, and S. Sun, Coupled generalized nonlinear Stokes flow with flow through a porous medium, SIAM J. Numer. Anal. 47 (2009), no. 2, 929-952. MR 2485439 (2010b:65254), https://doi.org/10.1137/070708354
  • [50] V. J. Ervin, E. W. Jenkins, and S. Sun, Coupling nonlinear Stokes and Darcy flow using mortar finite elements, Appl. Numer. Math. 61 (2011), no. 11, 1198-1222. MR 2842139 (2012j:65398), https://doi.org/10.1016/j.apnum.2011.08.002
  • [51] Min-fu Feng, Rui-sheng Qi, Rui Zhu, and Bing-tao Ju, Stabilized Crouzeix-Raviart element for the coupled Stokes and Darcy problem, Appl. Math. Mech. (English Ed.) 31 (2010), no. 3, 393-404. MR 2655474 (2011f:65255), https://doi.org/10.1007/s10483-010-0312-z
  • [52] Juan Galvis and Marcus Sarkis, Balancing domain decomposition methods for mortar coupling Stokes-Darcy systems, Domain decomposition methods in science and engineering XVI, Lect. Notes Comput. Sci. Eng., vol. 55, Springer, Berlin, 2007, pp. 373-380. MR 2334125, https://doi.org/10.1007/978-3-540-34469-8_46
  • [53] Juan Galvis and Marcus Sarkis, Non-matching mortar discretization analysis for the coupling Stokes-Darcy equations, Electron. Trans. Numer. Anal. 26 (2007), 350-384. MR 2391227 (2009a:76120)
  • [54] Juan Galvis and Marcus Sarkis, FETI and BDD preconditioners for Stokes-Mortar-Darcy systems, Commun. Appl. Math. Comput. Sci. 5 (2010), 1-30. MR 2600819 (2011a:35411), https://doi.org/10.2140/camcos.2010.5.1
  • [55] Martin J. Gander, Laurence Halpern, and Frederic Nataf, Optimized Schwarz methods, Domain decomposition methods in sciences and engineering (Chiba, 1999), DDM.org, Augsburg, 2001, pp. 15-27 (electronic). MR 1827519
  • [56] Gabriel N. Gatica, Salim Meddahi, and Ricardo Oyarzúa, A conforming mixed finite-element method for the coupling of fluid flow with porous media flow, IMA J. Numer. Anal. 29 (2009), no. 1, 86-108. MR 2470941 (2010b:76118), https://doi.org/10.1093/imanum/drm049
  • [57] Gabriel N. Gatica, Ricardo Oyarzúa, and Francisco-Javier Sayas, A residual-based a posteriori error estimator for a fully-mixed formulation of the Stokes-Darcy coupled problem, Comput. Methods Appl. Mech. Engrg. 200 (2011), no. 21-22, 1877-1891. MR 2787543 (2012a:65328), https://doi.org/10.1016/j.cma.2011.02.009
  • [58] Gabriel N. Gatica, Ricardo Oyarzúa, and Francisco-Javier Sayas, Convergence of a family of Galerkin discretizations for the Stokes-Darcy coupled problem, Numer. Methods Partial Differential Equations 27 (2011), no. 3, 721-748. MR 2809968 (2012g:65260), https://doi.org/10.1002/num.20548
  • [59] Vivette Girault and Pierre-Arnaud Raviart, Finite element methods for Navier-Stokes equations, Springer Series in Computational Mathematics, vol. 5, Springer-Verlag, Berlin, 1986. Theory and algorithms. MR 851383 (88b:65129)
  • [60] Vivette Girault and Béatrice Rivière, DG approximation of coupled Navier-Stokes and Darcy equations by Beaver-Joseph-Saffman interface condition, SIAM J. Numer. Anal. 47 (2009), no. 3, 2052-2089. MR 2519594 (2010f:76084), https://doi.org/10.1137/070686081
  • [61] James K. Guest and Jean H. Prévost, Topology optimization of creeping fluid flows using a Darcy-Stokes finite element, Internat. J. Numer. Methods Engrg. 66 (2006), no. 3, 461-484. MR 2222192 (2006k:76050), https://doi.org/10.1002/nme.1560
  • [62] Max D. Gunzburger, On the stability of Galerkin methods for initial-boundary value problems for hyperbolic systems, Math. Comp. 31 (1977), no. 139, 661-675. MR 0436624 (55 #9567)
  • [63] Max D. Gunzburger, Finite element methods for viscous incompressible flows, Computer Science and Scientific Computing, Academic Press Inc., Boston, MA, 1989. A guide to theory, practice, and algorithms. MR 1017032 (91d:76053)
  • [64] Ronald H. W. Hoppe, Paulo Porta, and Yuri Vassilevski, Computational issues related to iterative coupling of subsurface and channel flows, Calcolo 44 (2007), no. 1, 1-20. MR 2301278 (2008a:76088), https://doi.org/10.1007/s10092-007-0126-z
  • [65] Fei (Neil) Hua, Modeling, analysis and simulation of the Stokes-Darcy system with Beavers-Joseph interface condition, ProQuest LLC, Ann Arbor, MI, 2009. Thesis (Ph.D.)-The Florida State University. MR 2714080
  • [66] Willi Jäger and Andro Mikelić, On the interface boundary condition of Beavers, Joseph, and Saffman, SIAM J. Appl. Math. 60 (2000), no. 4, 1111-1127 (electronic). MR 1760028 (2001e:76122), https://doi.org/10.1137/S003613999833678X
  • [67] Bin Jiang, A parallel domain decomposition method for coupling of surface and groundwater flows, Comput. Methods Appl. Mech. Engrg. 198 (2009), no. 9-12, 947-957. MR 2498862 (2010c:76042), https://doi.org/10.1016/j.cma.2008.11.001
  • [68] I. Jones, Low Reynolds number flow past a porous spherical shell, Proc. Camb. Phil. Soc. 73 (1973), 231-238.
  • [69] Younbae Jun and Tsun-Zee Mai, ADI method--domain decomposition, Appl. Numer. Math. 56 (2006), no. 8, 1092-1107. MR 2234842 (2007h:65097), https://doi.org/10.1016/j.apnum.2005.09.008
  • [70] Younbae Jun and Tsun-Zee Mai, IPIC domain decomposition algorithm for parabolic problems, Appl. Math. Comput. 177 (2006), no. 1, 352-364. MR 2234525, https://doi.org/10.1016/j.amc.2005.11.017
  • [71] G. Kanschat and B. Rivière, A strongly conservative finite element method for the coupling of Stokes and Darcy flow, J. Comput. Phys. 229 (2010), no. 17, 5933-5943. MR 2657851 (2011h:76081), https://doi.org/10.1016/j.jcp.2010.04.021
  • [72] Trygve Karper, Kent-Andre Mardal, and Ragnar Winther, Unified finite element discretizations of coupled Darcy-Stokes flow, Numer. Methods Partial Differential Equations 25 (2009), no. 2, 311-326. MR 2483769 (2010a:65240), https://doi.org/10.1002/num.20349
  • [73] Sondes Khabthani, Lassaad Elasmi, and François Feuillebois, Perturbation solution of the coupled Stokes-Darcy problem, Discrete Contin. Dyn. Syst. Ser. B 15 (2011), no. 4, 971-990. MR 2786363 (2012e:76130), https://doi.org/10.3934/dcdsb.2011.15.971
  • [74] Yu. A. Kuznetsov, Overlapping domain decomposition methods for parabolic problems, Domain decomposition methods in science and engineering (Como, 1992), Contemp. Math., vol. 157, Amer. Math. Soc., Providence, RI, 1994, pp. 63-69. MR 1262606, https://doi.org/10.1090/conm/157/01406
  • [75] William Layton, Hoang Tran, and Xin Xiong, Long time stability of four methods for splitting the evolutionary Stokes-Darcy problem into Stokes and Darcy subproblems, J. Comput. Appl. Math. 236 (2012), no. 13, 3198-3217. MR 2912685, https://doi.org/10.1016/j.cam.2012.02.019
  • [76] William J. Layton, Friedhelm Schieweck, and Ivan Yotov, Coupling fluid flow with porous media flow, SIAM J. Numer. Anal. 40 (2002), no. 6, 2195-2218 (2003). MR 1974181 (2004c:76048), https://doi.org/10.1137/S0036142901392766
  • [77] Jingzhi Li, Jens Markus Melenk, Barbara Wohlmuth, and Jun Zou, Optimal a priori estimates for higher order finite elements for elliptic interface problems, Appl. Numer. Math. 60 (2010), no. 1-2, 19-37. MR 2566075 (2011a:65370), https://doi.org/10.1016/j.apnum.2009.08.005
  • [78] S. Li, H. Zheng, and W. Layton, A decoupling method with different sub-domain time steps for the nonstationary Stokes-Darcy model, Numer. Methods Partial Differential Equations 29 (2013), doi: 10.1002/num.21720. MR 3022899
  • [79] P.-L. Lions, On the Schwarz alternating method. I, Partial Differential Equations (Paris, 1987) SIAM, Philadelphia, PA, 1988, pp. 1-42. MR 972510 (90a:65248)
  • [80] P.-L. Lions, On the Schwarz alternating method. III. A variant for nonoverlapping subdomains, Partial Differential Equations (Houston, TX, 1989) SIAM, Philadelphia, PA, 1990, pp. 202-223. MR 1064345 (91g:65226)
  • [81] Kent Andre Mardal, Xue-Cheng Tai, and Ragnar Winther, A robust finite element method for Darcy-Stokes flow, SIAM J. Numer. Anal. 40 (2002), no. 5, 1605-1631. MR 1950614 (2003m:76110), https://doi.org/10.1137/S0036142901383910
  • [82] Arif Masud, A stabilized mixed finite element method for Darcy-Stokes flow, Internat. J. Numer. Methods Fluids 54 (2007), no. 6-8, 665-681. MR 2333004 (2008b:76120), https://doi.org/10.1002/fld.1508
  • [83] Mo Mu and Jinchao Xu, A two-grid method of a mixed Stokes-Darcy model for coupling fluid flow with porous media flow, SIAM J. Numer. Anal. 45 (2007), no. 5, 1801-1813. MR 2346360 (2008i:65264), https://doi.org/10.1137/050637820
  • [84] Mo Mu and Xiaohong Zhu, Decoupled schemes for a non-stationary mixed Stokes-Darcy model, Math. Comp. 79 (2010), no. 270, 707-731. MR 2600540 (2011c:65219), https://doi.org/10.1090/S0025-5718-09-02302-3
  • [85] Steffen Münzenmaier and Gerhard Starke, First-order system least squares for coupled Stokes-Darcy flow, SIAM J. Numer. Anal. 49 (2011), no. 1, 387-404. MR 2783231 (2012e:65282), https://doi.org/10.1137/100805108
  • [86] V. Nassehi and J. Petera, A new least-squares finite element model for combined Navier-Stokes and Darcy flows in geometrically complicated domains with solid and porous boundaries, Internat. J. Numer. Methods Engrg. 37 (1994), no. 9, 1609-1620. MR 1274560 (95a:76061), https://doi.org/10.1002/nme.1620370912
  • [87] Weihong Peng, Guohua Cao, Dongzhengzhu, and Shuncai Li, Darcy-Stokes equations with finite difference and natural boundary element coupling method, CMES Comput. Model. Eng. Sci. 75 (2011), no. 3-4, 173-188. MR 2867757
  • [88] Peter Popov, Yalchin Efendiev, and Guan Qin, Multiscale modeling and simulations of flows in naturally fractured Karst reservoirs, Commun. Comput. Phys. 6 (2009), no. 1, 162-184. MR 2537310, https://doi.org/10.4208/cicp.2009.v6.p162
  • [89] Lizhen Qin and Xuejun Xu, Optimized Schwarz methods with Robin transmission conditions for parabolic problems, SIAM J. Sci. Comput. 31 (2008), no. 1, 608-623. MR 2460791 (2009j:65234), https://doi.org/10.1137/070682149
  • [90] Alfio Quarteroni and Alberto Valli, Domain decomposition methods for partial differential equations, Numerical Mathematics and Scientific Computation, The Clarendon Press Oxford University Press, New York, 1999. Oxford Science Publications. MR 1857663 (2002i:65002)
  • [91] Béatrice Rivière, Analysis of a discontinuous finite element method for the coupled Stokes and Darcy problems, J. Sci. Comput. 22/23 (2005), 479-500. MR 2142206 (2006b:65175), https://doi.org/10.1007/s10915-004-4147-3
  • [92] Béatrice Rivière and Ivan Yotov, Locally conservative coupling of Stokes and Darcy flows, SIAM J. Numer. Anal. 42 (2005), no. 5, 1959-1977. MR 2139232 (2006a:76035), https://doi.org/10.1137/S0036142903427640
  • [93] Hongxing Rui and Ran Zhang, A unified stabilized mixed finite element method for coupling Stokes and Darcy flows, Comput. Methods Appl. Mech. Engrg. 198 (2009), no. 33-36, 2692-2699. MR 2532369 (2010g:76045), https://doi.org/10.1016/j.cma.2009.03.011
  • [94] P. Saffman, On the boundary condition at the interface of a porous medium, Stud. in Appl. Math. 1 (1971), 77-84.
  • [95] Xue-Cheng Tai and Ragnar Winther, A discrete de Rham complex with enhanced smoothness, Calcolo 43 (2006), no. 4, 287-306. MR 2283095 (2007j:76050), https://doi.org/10.1007/s10092-006-0124-6
  • [96] Vidar Thomée, Galerkin finite element methods for parabolic problems, 2nd ed., Springer Series in Computational Mathematics, vol. 25, Springer-Verlag, Berlin, 2006. MR 2249024 (2007b:65003)
  • [97] Svetlana Tlupova and Ricardo Cortez, Boundary integral solutions of coupled Stokes and Darcy flows, J. Comput. Phys. 228 (2009), no. 1, 158-179. MR 2464074 (2009j:76168), https://doi.org/10.1016/j.jcp.2008.09.011
  • [98] J. M. Urquiza, D. N'Dri, A. Garon, and M. C. Delfour, Coupling Stokes and Darcy equations, Appl. Numer. Math. 58 (2008), no. 5, 525-538. MR 2407730 (2009a:76053), https://doi.org/10.1016/j.apnum.2006.12.006
  • [99] Mary Fanett Wheeler, A priori $ L_{2}$ error estimates for Galerkin approximations to parabolic partial differential equations, SIAM J. Numer. Anal. 10 (1973), 723-759. MR 0351124 (50 #3613)
  • [100] Xiaoping Xie, Jinchao Xu, and Guangri Xue, Uniformly-stable finite element methods for Darcy-Stokes-Brinkman models, J. Comput. Math. 26 (2008), no. 3, 437-455. MR 2421892 (2009g:76087)
  • [101] Jinchao Xu and Jun Zou, Some nonoverlapping domain decomposition methods, SIAM Rev. 40 (1998), no. 4, 857-914. MR 1659681 (99m:65241), https://doi.org/10.1137/S0036144596306800
  • [102] Xuejun Xu and Shangyou Zhang, A new divergence-free interpolation operator with applications to the Darcy-Stokes-Brinkman equations, SIAM J. Sci. Comput. 32 (2010), no. 2, 855-874. MR 2609343 (2011g:76108), https://doi.org/10.1137/090751049
  • [103] Shiquan Zhang, Xiaoping Xie, and Yumei Chen, Low order nonconforming rectangular finite element methods for Darcy-Stokes problems, J. Comput. Math. 27 (2009), no. 2-3, 400-424. MR 2495068 (2010d:65339)
  • [104] Zheming Zheng, Bernd Simeon, and Linda Petzold, A stabilized explicit Lagrange multiplier based domain decomposition method for parabolic problems, J. Comput. Phys. 227 (2008), no. 10, 5272-5285. MR 2414854 (2010a:65180), https://doi.org/10.1016/j.jcp.2008.01.057
  • [105] Liyong Zhu, Guangwei Yuan, and Qiang Du, An explicit-implicit predictor-corrector domain decomposition method for time dependent multi-dimensional convection diffusion equations, Numer. Math. Theory Methods Appl. 2 (2009), no. 3, 301-325. MR 2605862 (2011g:65188), https://doi.org/10.4208/nmtma.2009.m8016
  • [106] Liyong Zhu, Guangwei Yuan, and Qiang Du, An efficient explicit/implicit domain decomposition method for convection-diffusion equations, Numer. Methods Partial Differential Equations 26 (2010), no. 4, 852-873. MR 2642324 (2011d:65268), https://doi.org/10.1002/num.20461
  • [107] Yu Zhuang, An alternating explicit-implicit domain decomposition method for the parallel solution of parabolic equations, J. Comput. Appl. Math. 206 (2007), no. 1, 549-566. MR 2337462 (2008i:65197), https://doi.org/10.1016/j.cam.2006.08.024
  • [108] Yu Zhuang and Xian-He Sun, Stabilized explicit-implicit domain decomposition methods for the numerical solution of parabolic equations, SIAM J. Sci. Comput. 24 (2002), no. 1, 335-358 (electronic). MR 1924428 (2003g:65112), https://doi.org/10.1137/S1064827501384755

Similar Articles

Retrieve articles in Mathematics of Computation with MSC (2010): 65M55, 65M12, 65M15, 65M60, 35M10, 35Q35, 76D07, 76S05

Retrieve articles in all journals with MSC (2010): 65M55, 65M12, 65M15, 65M60, 35M10, 35Q35, 76D07, 76S05


Additional Information

Yanzhao Cao
Affiliation: Department of Mathematics and Statistics, Auburn University, Auburn, Alabama 36830
Email: yzc0009@auburn.edu

Max Gunzburger
Affiliation: Department of Scientific Computing, Florida State University, Tallahassee, Florida 32306
Email: gunzburg@fsu.edu

Xiaoming He
Affiliation: Department of Mathematics and Statistics, Missouri University of Science and Technology, Rolla, Missouri 65409
Email: hex@mst.edu

Xiaoming Wang
Affiliation: Department of Mathematics, Florida State University, Tallahassee, Florida 32306
Email: wxm@math.fsu.edu

DOI: https://doi.org/10.1090/S0025-5718-2014-02779-8
Keywords: Stokes-Darcy model, domain decomposition methods, parallel algorithms, finite element methods
Received by editor(s): June 7, 2010
Received by editor(s) in revised form: July 22, 2012
Published electronically: February 3, 2014
Article copyright: © Copyright 2014 American Mathematical Society

American Mathematical Society