Remote Access Mathematics of Computation
Green Open Access

Mathematics of Computation

ISSN 1088-6842(online) ISSN 0025-5718(print)

 
 

 

Divergence-conforming HDG methods for Stokes flows


Authors: Bernardo Cockburn and Francisco-Javier Sayas
Journal: Math. Comp. 83 (2014), 1571-1598
MSC (2010): Primary 65M60, 65N30, 35L65
DOI: https://doi.org/10.1090/S0025-5718-2014-02802-0
Published electronically: March 19, 2014
MathSciNet review: 3194122
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: In this paper, we show that by sending the normal stabilization function to infinity in the hybridizable discontinuous Galerkin methods previously proposed in [Comput. Methods Appl. Mech. Engrg. 199 (2010), 582-597], for Stokes flows, a new class of divergence-conforming methods is obtained which maintains the convergence properties of the original methods. Thus, all the components of the approximate solution, which use polynomial spaces of degree $ k$, converge with the optimal order of $ k+1$ in $ L^2$ for any $ k \ge 0$. Moreover, the postprocessed velocity approximation is also divergence-conforming, exactly divergence-free and converges with order $ k+2$ for $ k\ge 1$ and with order $ 1$ for $ k=0$. The novelty of the analysis is that it proceeds by taking the limit when the normal stabilization goes to infinity in the error estimates recently obtained in [Math. Comp., 80 (2011) 723-760].


References [Enhancements On Off] (What's this?)

  • [1] Garth A. Baker, Wadi N. Jureidini, and Ohannes A. Karakashian, Piecewise solenoidal vector fields and the Stokes problem, SIAM J. Numer. Anal. 27 (1990), no. 6, 1466-1485. MR 1080332 (91m:65246), https://doi.org/10.1137/0727085
  • [2] Jesús Carrero, Bernardo Cockburn, and Dominik Schötzau, Hybridized globally divergence-free LDG methods. I. The Stokes problem, Math. Comp. 75 (2006), no. 254, 533-563 (electronic). MR 2196980 (2006m:76040), https://doi.org/10.1090/S0025-5718-05-01804-1
  • [3] B. Cockburn, Two new techniques for generating exactly incompressible approximate velocities, Computational Fluid Dynamics 2006. Proceedings of the Fourth International Conference in Fluid Dynamics, ICCDF4, Ghent, Belgium, 10-14 July 2006 (H. Deconinck and E. Dick, eds.), Springer-Verlag, 2009, pp. 1-11.
  • [4] Bernardo Cockburn, Bo Dong, and Johnny Guzmán, A superconvergent LDG-hybridizable Galerkin method for second-order elliptic problems, Math. Comp. 77 (2008), no. 264, 1887-1916. MR 2429868 (2009d:65166), https://doi.org/10.1090/S0025-5718-08-02123-6
  • [5] Bernardo Cockburn and Jayadeep Gopalakrishnan, Incompressible finite elements via hybridization. I. The Stokes system in two space dimensions, SIAM J. Numer. Anal. 43 (2005), no. 4, 1627-1650 (electronic). MR 2182142 (2006m:65262), https://doi.org/10.1137/04061060X
  • [6] Bernardo Cockburn and Jayadeep Gopalakrishnan, Incompressible finite elements via hybridization. II. The Stokes system in three space dimensions, SIAM J. Numer. Anal. 43 (2005), no. 4, 1651-1672 (electronic). MR 2182143 (2006m:65263), https://doi.org/10.1137/040610659
  • [7] Bernardo Cockburn and Jayadeep Gopalakrishnan, The derivation of hybridizable discontinuous Galerkin methods for Stokes flow, SIAM J. Numer. Anal. 47 (2009), no. 2, 1092-1125. MR 2485446 (2010d:65316), https://doi.org/10.1137/080726653
  • [8] Bernardo Cockburn, Jayadeep Gopalakrishnan, and Raytcho Lazarov, Unified hybridization of discontinuous Galerkin, mixed, and continuous Galerkin methods for second order elliptic problems, SIAM J. Numer. Anal. 47 (2009), no. 2, 1319-1365. MR 2485455 (2010b:65251), https://doi.org/10.1137/070706616
  • [9] Bernardo Cockburn, Jayadeep Gopalakrishnan, Ngoc Cuong Nguyen, Jaume Peraire, and Francisco-Javier Sayas, Analysis of HDG methods for Stokes flow, Math. Comp. 80 (2011), no. 274, 723-760. MR 2772094 (2012d:65273), https://doi.org/10.1090/S0025-5718-2010-02410-X
  • [10] Bernardo Cockburn, Jayadeep Gopalakrishnan, and Francisco-Javier Sayas, A projection-based error analysis of HDG methods, Math. Comp. 79 (2010), no. 271, 1351-1367. MR 2629996 (2011d:65354), https://doi.org/10.1090/S0025-5718-10-02334-3
  • [11] Bernardo Cockburn, Johnny Guzmán, and Haiying Wang, Superconvergent discontinuous Galerkin methods for second-order elliptic problems, Math. Comp. 78 (2009), no. 265, 1-24. MR 2448694 (2009i:65213), https://doi.org/10.1090/S0025-5718-08-02146-7
  • [12] Bernardo Cockburn, Guido Kanschat, and Dominik Schotzau, A locally conservative LDG method for the incompressible Navier-Stokes equations, Math. Comp. 74 (2005), no. 251, 1067-1095 (electronic). MR 2136994 (2006a:65157), https://doi.org/10.1090/S0025-5718-04-01718-1
  • [13] Bernardo Cockburn, Guido Kanschat, and Dominik Schötzau, A note on discontinuous Galerkin divergence-free solutions of the Navier-Stokes equations, J. Sci. Comput. 31 (2007), no. 1-2, 61-73. MR 2304270 (2008f:76109), https://doi.org/10.1007/s10915-006-9107-7
  • [14] Bernardo Cockburn, Guido Kanschat, and Dominik Schötzau, An equal-order DG method for the incompressible Navier-Stokes equations, J. Sci. Comput. 40 (2009), no. 1-3, 188-210. MR 2511732 (2010i:65263), https://doi.org/10.1007/s10915-008-9261-1
  • [15] M. Farhloul and M. Fortin, A new mixed finite element for the Stokes and elasticity problems, SIAM J. Numer. Anal. 30 (1993), no. 4, 971-990. MR 1231323 (94g:65123), https://doi.org/10.1137/0730051
  • [16] Vivette Girault and Pierre-Arnaud Raviart, Finite element methods for Navier-Stokes equations, Springer Series in Computational Mathematics, vol. 5, Springer-Verlag, Berlin, 1986. Theory and algorithms. MR 851383 (88b:65129)
  • [17] M. D. Gunzburger, The inf-sup condition in mixed finite element methods with application to the Stokes system, discretization (Fort Collins, CO, 2001) SIAM, Philadelphia, PA, 2002, pp. 93-121. MR 2026665
  • [18] Peter Hansbo and Mats G. Larson, Piecewise divergence-free discontinuous Galerkin methods for Stokes flow, Comm. Numer. Methods Engrg. 24 (2008), no. 5, 355-366. MR 2412047 (2009c:65306), https://doi.org/10.1002/cnm.975
  • [19] B. Cockburn, N. C. Nguyen, and J. Peraire, A comparison of HDG methods for Stokes flow, J. Sci. Comput. 45 (2010), no. 1-3, 215-237. MR 2679797 (2011g:65246), https://doi.org/10.1007/s10915-010-9359-0
  • [20] N. C. Nguyen, J. Peraire, and B. Cockburn, A hybridizable discontinuous Galerkin method for Stokes flow, Comput. Methods Appl. Mech. Engrg. 199 (2010), no. 9-12, 582-597. MR 2796169 (2011m:65286), https://doi.org/10.1016/j.cma.2009.10.007
  • [21] N. C. Nguyen, J. Peraire, and B. Cockburn, An implicit high-order hybridizable discontinuous Galerkin method for the incompressible Navier-Stokes equations, J. Comput. Phys. 230 (2011), no. 4, 1147-1170. MR 2753354 (2011k:76055), https://doi.org/10.1016/j.jcp.2010.10.032
  • [22] L. R. Scott and M. Vogelius, Norm estimates for a maximal right inverse of the divergence operator in spaces of piecewise polynomials, RAIRO Modél. Math. Anal. Numér. 19 (1985), no. 1, 111-143 (English, with French summary). MR 813691 (87i:65190)
  • [23] Junping Wang and Xiu Ye, New finite element methods in computational fluid dynamics by $ H(\rm div)$ elements, SIAM J. Numer. Anal. 45 (2007), no. 3, 1269-1286 (electronic). MR 2318812 (2009b:65328), https://doi.org/10.1137/060649227

Similar Articles

Retrieve articles in Mathematics of Computation with MSC (2010): 65M60, 65N30, 35L65

Retrieve articles in all journals with MSC (2010): 65M60, 65N30, 35L65


Additional Information

Bernardo Cockburn
Affiliation: School of Mathematics, University of Minnesota, 206 Church Street S.E., Minneapolis, Minnesota 55455
Email: cockburn@math.umn.edu

Francisco-Javier Sayas
Affiliation: Department of Mathematical Sciences, University of Delaware, Ewing Hall, Newark, Delaware 19711
Email: fjsayas@udel.edu

DOI: https://doi.org/10.1090/S0025-5718-2014-02802-0
Keywords: Discontinuous Galerkin methods, hybridization, incompressible fluid flow
Received by editor(s): July 25, 2011
Received by editor(s) in revised form: December 31, 2012
Published electronically: March 19, 2014
Additional Notes: The first author was partially supported by the National Science Foundation (Grant DMS-0712955) and by the Minnesota Supercomputing Institute.
The second author was a Visiting Professor of the School of Mathematics, University of Minnesota, during the development of this work, and was partially supported by the National Science Foundation (Grant DMS 1216356).
Article copyright: © Copyright 2014 American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.

American Mathematical Society