Remote Access Mathematics of Computation
Green Open Access

Mathematics of Computation

ISSN 1088-6842(online) ISSN 0025-5718(print)

Request Permissions   Purchase Content 
 
 

 

Computation of the topological type of a real Riemann surface


Authors: C. Kalla and C. Klein
Journal: Math. Comp. 83 (2014), 1823-1846
MSC (2010): Primary 14Q05; Secondary 68W30
DOI: https://doi.org/10.1090/S0025-5718-2014-02817-2
Published electronically: March 13, 2014
MathSciNet review: 3194131
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We present an algorithm for the computation of the topological type of a real compact Riemann surface associated to an algebraic curve, i.e., its genus and the properties of the set of fixed points of the anti-holomorphic involution $ \tau $, namely, the number of its connected components, and whether this set divides the surface into one or two connected components. This is achieved by transforming an arbitrary canonical homology basis to a homology basis where the $ \mathcal {A}$-cycles are invariant under the anti-holomorphic involution $ \tau $.


References [Enhancements On Off] (What's this?)

  • [1] V. I. Arnold, The situation of ovals of real plane algebraic curves, the involutions of four-dimensional smooth manifolds, and the arithmetic of integral quadratic forms, Funkcional. Anal. i Priložen. 5 (1971), no. 3, 1-9 (Russian). MR 0286790 (44 #3999)
  • [2] Dennis S. Arnon and Scott McCallum, A polynomial-time algorithm for the topological type of a real algebraic curve, J. Symbolic Comput. 5 (1988), no. 1-2, 213-236. MR 949120 (89k:12005), https://doi.org/10.1016/S0747-7171(88)80013-0
  • [3] E. Belokolos, A. Bobenko, V. Enolskii, A. Its, V. Matveev, Algebro-geometric approach to nonlinear integrable equations, Springer Series in nonlinear dynamics (1994).
  • [4] Alexander I. Bobenko and Christian Kleintitle (eds.), Computational approach to Riemann surfaces, Lecture Notes in Mathematics, vol. 2013, Springer, Heidelberg, 2011. MR 2920500
  • [5] H. W. Braden and T. P. Northover, Klein's curve, J. Phys. A 43 (2010), no. 43, 434009, 17. MR 2727783 (2012d:14056), https://doi.org/10.1088/1751-8113/43/43/434009
  • [6] H. Braden, V. Enolskii, T. Northover, Maple packages extcurves and CyclePainter, available at gitorious.org.
  • [7] E. Bujalance, A. F. Costa, and D. Singerman, Application of Hoare's theorem to symmetries of Riemann surfaces, Ann. Acad. Sci. Fenn. Ser. A I Math. 18 (1993), no. 2, 307-322. MR 1234736 (94i:20087)
  • [8] Emilio Bujalance, Francisco Javier Cirre, José Manuel Gamboa, and Grzegorz Gromadzki, Symmetries of compact Riemann surfaces, Lecture Notes in Mathematics, vol. 2007, Springer-Verlag, Berlin, 2010. MR 2683160 (2011h:30062)
  • [9] S. A. Broughton, E. Bujalance, A. F. Costa, J. M. Gamboa, and G. Gromadzki, Symmetries of Riemann surfaces on which $ {\rm PSL}(2,q)$ acts as a Hurwitz automorphism group, J. Pure Appl. Algebra 106 (1996), no. 2, 113-126. MR 1372846 (97e:14043), https://doi.org/10.1016/0022-4049(94)00065-4
  • [10] Helena B. Campos, Basis of homology adapted to the trigonal automorphism of a Riemann surface, RACSAM. Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Mat. 101 (2007), no. 2, 167-172 (English, with Spanish summary). MR 2667466 (2011h:30058)
  • [11] A. Comessati, Sulla connessione delle superficie algebriche reali, Annali di Mat. (3) 23, 215-283 (1915).
  • [12] M. Coste and M.-F. Roy, Thom's lemma, the coding of real algebraic numbers and the computation of the topology of semi-algebraic sets, J. Symbolic Comput. 5 (1988), no. 1-2, 121-129. MR 949115 (89g:12002), https://doi.org/10.1016/S0747-7171(88)80008-7
  • [13] Bernard Deconinck and Mark van Hoeij, Computing Riemann matrices of algebraic curves, Advances in nonlinear mathematics and science, Phys. D 152/153 (2001), 28-46. MR 1837895 (2002j:30001), https://doi.org/10.1016/S0167-2789(01)00156-7
  • [14] Bernard Deconinck, Matthias Heil, Alexander Bobenko, Mark van Hoeij, and Marcus Schmies, Computing Riemann theta functions, Math. Comp. 73 (2004), no. 247, 1417-1442. MR 2047094 (2005c:65015), https://doi.org/10.1090/S0025-5718-03-01609-0
  • [15] Bernard Deconinck and Matthew S. Patterson, Computing with plane algebraic curves and Riemann surfaces: the algorithms of the Maple package ``algcurves'', Computational approach to Riemann surfaces, Lecture Notes in Math., vol. 2013, Springer, Heidelberg, 2011, pp. 67-123. MR 2905611, https://doi.org/10.1007/978-3-642-17413-1_2
  • [16] B.A. Dubrovin, Matrix finite-zone operators, Revs. Sci. Tech. 23, 20-50 (1983).
  • [17] B. A. Dubrovin and S. M. Natanzon, Real theta-function solutions of the Kadomtsev-Petviashvili equation, Izv. Akad. Nauk SSSR Ser. Mat. 52 (1988), no. 2, 267-286, 446 (Russian); English transl., Math. USSR-Izv. 32 (1989), no. 2, 269-288. MR 941677 (89m:58092)
  • [18] H. Feng, Decomposition and Computation of the Topology of Plane Real Algebraic Curves, Ph.D. thesis, The Royal Institute of Technology, Stockholm (1992).
  • [19] J. Frauendiener and C. Klein, Hyperelliptic theta-functions and spectral methods, J. Comput. Appl. Math. 167 (2004), no. 1, 193-218. MR 2059721 (2005c:33014), https://doi.org/10.1016/j.cam.2003.10.003
  • [20] J. Frauendiener and C. Klein, Hyperelliptic theta-functions and spectral methods: KdV and KP solutions, Lett. Math. Phys. 76 (2006), no. 2-3, 249-267. MR 2238720 (2007f:14027), https://doi.org/10.1007/s11005-006-0068-4
  • [21] Jörg Frauendiener and Christian Klein, Algebraic curves and Riemann surfaces in Matlab, Computational approach to Riemann surfaces, Lecture Notes in Math., vol. 2013, Springer, Heidelberg, 2011, pp. 125-162. MR 2920501, https://doi.org/10.1007/978-3-642-17413-1_3
  • [22] A. Gabard, Sur la topologie et la géométrie des courbes algébriques réelles, Ph.D. Thesis (2004).
  • [23] Laureano Gonzalez-Vega and Ioana Necula, Efficient topology determination of implicitly defined algebraic plane curves, Comput. Aided Geom. Design 19 (2002), no. 9, 719-743. MR 1940259 (2003j:68146), https://doi.org/10.1016/S0167-8396(02)00167-X
  • [24] D. A. Gudkov, Complete topological classification of the disposition of ovals of a sixth order curve in the projective plane, Gorkov. Gos. Univ. Učen. Zap. Vyp. 87 (1969), 118-153 (Russian). MR 0260739 (41 #5363)
  • [25] Axel Harnack, Ueber die Vieltheiligkeit der ebenen algebraischen Curven, Math. Ann. 10 (1876), no. 2, 189-198 (German). MR 1509883, https://doi.org/10.1007/BF01442458
  • [26] James L. Hafner and Kevin S. McCurley, Asymptotically fast triangularization of matrices over rings, SIAM J. Comput. 20 (1991), no. 6, 1068-1083. MR 1135749 (93d:15021), https://doi.org/10.1137/0220067
  • [27] David Hilbert, Ueber die reellen Züge algebraischer Curven, Math. Ann. 38 (1891), no. 1, 115-138 (German). MR 1510666, https://doi.org/10.1007/BF01212696
  • [28] D. Hilbert, Mathematische Probleme, Arch. Math. Phys., 1:43-63, (German) (1901).
  • [29] A. H. M. Hoare and D. Singerman, The orientability of subgroups of plane groups, Groups--St. Andrews 1981 (St. Andrews, 1981) London Math. Soc. Lecture Note Ser., vol. 71, Cambridge Univ. Press, Cambridge, 1982, pp. 221-227. MR 679163 (85g:20061), https://doi.org/10.1017/CBO9780511661884.014
  • [30] Hoon Hong, An efficient method for analyzing the topology of plane real algebraic curves, Symbolic computation, new trends and developments (Lille, 1993), Math. Comput. Simulation 42 (1996), no. 4-6, 571-582. MR 1430842 (98f:14048), https://doi.org/10.1016/S0378-4754(96)00034-1
  • [31] C. Kalla, New degeneration of Fay's identity and its application to integrable systems, Int. Math. Res. Not. IMRN (2013), no. 18, 4170-4222, DOI 10.1093/imrn.rns175. MR 3106886
  • [32] C. Kalla and C. Klein, On the numerical evaluation of algebro-geometric solutions to integrable equations, Nonlinearity 25 (2012), no. 3, 569-596. MR 2887984, https://doi.org/10.1088/0951-7715/25/3/569
  • [33] Felix Klein, On Riemann's theory of algebraic functions and their integrals. A supplement to the usual treatises, Translated from the German by Frances Hardcastle, Dover Publications Inc., New York, 1963. MR 0158068 (28 #1295)
  • [34] Serge Lang, Algebra, 3rd ed., Graduate Texts in Mathematics, vol. 211, Springer-Verlag, New York, 2002. MR 1878556 (2003e:00003)
  • [35] T. M. Malanyuk, Finite-gap solutions of the Davey-Stewartson equations, J. Nonlinear Sci. 4 (1994), no. 1, 1-21. MR 1258480 (94k:35299), https://doi.org/10.1007/BF02430624
  • [36] S. M. Natanzon, Geometry and algebra of real forms of complex curves, Math. Z. 243 (2003), no. 2, 391-407. MR 1961871 (2003k:14072), https://doi.org/10.1007/s00209-002-0480-0
  • [37] I. Petrowsky, On the topology of real plane algebraic curves, Ann. of Math. (2) 39 (1938), no. 1, 189-209. MR 1503398, https://doi.org/10.2307/1968723
  • [38] K. Rohn, Die Maximalzahl und Anordnung der Ovale bei der ebenen Kurve 6. Ordnung und bei der Fläche 4. Ordnung, Math. Ann. 73 (1913), no. 2, 177-229 (German). MR 1511726, https://doi.org/10.1007/BF01456711
  • [39] Takis Sakkalis, The topological configuration of a real algebraic curve, Bull. Austral. Math. Soc. 43 (1991), no. 1, 37-50. MR 1086716 (92e:14056), https://doi.org/10.1017/S0004972700028756
  • [40] Raimund Seidel and Nicola Wolpert, On the exact computation of the topology of real algebraic curves, Computational geometry (SCG'05), ACM, New York, 2005, pp. 107-115. MR 2460354 (2010c:68158), https://doi.org/10.1145/1064092.1064111
  • [41] M. Seppälä and R. Silhol, Moduli spaces for real algebraic curves and real abelian varieties, Math. Z. 201 (1989), no. 2, 151-165. MR 997218 (90k:14043), https://doi.org/10.1007/BF01160673
  • [42] C. L. Tretkoff and M. D. Tretkoff, Combinatorial group theory, Riemann surfaces and differential equations, Contributions to group theory, Contemp. Math., vol. 33, Amer. Math. Soc., Providence, RI, 1984, pp. 467-519. MR 767125 (86g:30055), https://doi.org/10.1090/conm/033/767125
  • [43] M. Trott, Applying Groebner basis to three problems in geometry, Mathematica in Education and Research 6 (1): 15-28 (1997).
  • [44] Victor Vinnikov, Selfadjoint determinantal representations of real plane curves, Math. Ann. 296 (1993), no. 3, 453-479. MR 1225986 (94e:14038), https://doi.org/10.1007/BF01445115
  • [45] O. Ya. Viro, Gluing of plane real algebraic curves and constructions of curves of degrees $ 6$ and $ 7$, Topology (Leningrad, 1982) Lecture Notes in Math., vol. 1060, Springer, Berlin, 1984, pp. 187-200. MR 770238 (87i:14029), https://doi.org/10.1007/BFb0099934

Similar Articles

Retrieve articles in Mathematics of Computation with MSC (2010): 14Q05, 68W30

Retrieve articles in all journals with MSC (2010): 14Q05, 68W30


Additional Information

C. Kalla
Affiliation: Centre de recherches mathématiques Université de Montréal, Case postale 6128, Montréal H3C 3J7, Canada
Address at time of publication: MAPMO, Université d’Orléans, Rue de Chartres, B.P. 6759, 45007 Orléans Cedex 2, France
Email: kalla@crm.umontreal.ca

C. Klein
Affiliation: Institut de Mathématiques de Bourgogne, Université de Bourgogne, 9 avenue Alain Savary, 21078 Dijon Cedex, France
Email: Christian.Klein@u-bourgogne.fr

DOI: https://doi.org/10.1090/S0025-5718-2014-02817-2
Received by editor(s): April 22, 2012
Received by editor(s) in revised form: December 31, 2012
Published electronically: March 13, 2014
Additional Notes: The authors thank V. Shramchenko for useful discussions and hints. This work was supported in part by the project FroM-PDE funded by the European Research Council through the Advanced Investigator Grant Scheme, and the ANR via the program ANR-09-BLAN-0117-01.
Article copyright: © Copyright 2014 American Mathematical Society

American Mathematical Society