Remote Access Mathematics of Computation
Green Open Access

Mathematics of Computation

ISSN 1088-6842(online) ISSN 0025-5718(print)

 
 

 

Computing ideal classes representatives in quaternion algebras


Authors: Ariel Pacetti and Nicolás Sirolli
Journal: Math. Comp. 83 (2014), 2479-2507
MSC (2010): Primary 11R52
DOI: https://doi.org/10.1090/S0025-5718-2014-02796-8
Published electronically: January 9, 2014
MathSciNet review: 3223343
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Let $ K$ be a totally real number field and let $ B$ be a totally definite quaternion algebra over $ K$. Given a set of representatives for ideal classes for a maximal order in $ B$, we show how to construct in an efficient way a set of representatives of ideal classes for any Bass order in $ B$. The algorithm does not require any knowledge of class numbers, and improves the equivalence checking process by using a simple calculation with global units. As an application, we compute ideal classes representatives for an order of discriminant $ 30$ in an algebra over the real quadratic field $ \mathbb{Q}[\sqrt {5}]$.


References [Enhancements On Off] (What's this?)

  • [Brz82] Juliusz Brzeziński, A characterization of Gorenstein orders in quaternion algebras, Math. Scand. 50 (1982), no. 1, 19-24. MR 664504 (83i:16009)
  • [Brz83] Juliusz Brzeziński, On orders in quaternion algebras, Comm. Algebra 11 (1983), no. 5, 501-522. MR 693798 (85c:16011), https://doi.org/10.1080/00927878308822861
  • [Brz90] Juliusz Brzezinski, On automorphisms of quaternion orders, J. Reine Angew. Math. 403 (1990), 166-186. MR 1030414 (90m:11182), https://doi.org/10.1515/crll.1990.403.166
  • [Coh00] Henri Cohen, Advanced topics in computational number theory, Graduate Texts in Mathematics, vol. 193, Springer-Verlag, New York, 2000. MR 1728313 (2000k:11144)
  • [CS01] Caterina Consani and Jasper Scholten, Arithmetic on a quintic threefold, Internat. J. Math. 12 (2001), no. 8, 943-972. MR 1863287 (2002h:11058), https://doi.org/10.1142/S0129167X01001118
  • [DD08] Lassina Dembélé and Steve Donnelly, Computing Hilbert modular forms over fields with nontrivial class group, Algorithmic Number Theory, Lecture Notes in Comput. Sci., 5011 Springer, Berlin, 2008, 371-386. MR 2467859 (2010d:11149)
  • [EMP86] H. M. Edgar, R. A. Mollin, and B. L. Peterson, Class groups, totally positive units, and squares, Proc. Amer. Math. Soc. 98 (1986), no. 1, 33-37. MR 848870 (87i:11166), https://doi.org/10.2307/2045762
  • [GL09] Benedict H. Gross and Mark W. Lucianovic, On cubic rings and quaternion rings, J. Number Theory 129 (2009), no. 6, 1468-1478. MR 2521487 (2010b:11044), https://doi.org/10.1016/j.jnt.2008.06.003
  • [Kap69] Irving Kaplansky, Submodules of quaternion algebras, Proc. London Math. Soc. (3) 19 (1969), 219-232. MR 0240142 (39 #1496)
  • [KV10] Markus Kirschmer and John Voight, Algorithmic enumeration of ideal classes for quaternion orders, SIAM J. Comput. 39 (2010), no. 5, 1714-1747. MR 2592031 (2011c:11171), https://doi.org/10.1137/080734467
  • [Lem11] Stefan Lemurell, Quaternion orders and ternary quadratic forms, 2011, http://arxiv.org/abs/1103.4922.
  • [Piz76] Arnold Pizer, On the arithmetic of quaternion algebras. II, J. Math. Soc. Japan 28 (1976), no. 4, 676-688. MR 0432600 (55 #5587)
  • [Piz80] Arnold Pizer, An algorithm for computing modular forms on $ \Gamma _{0}(N)$, J. Algebra 64 (1980), no. 2, 340-390. MR 579066 (83g:10020), https://doi.org/10.1016/0021-8693(80)90151-9
  • [PRV02] Ariel Pacetti and Fernando Rodriguez Villegas, http://www.ma.utexas.edu/users/villegas/cnt/cnt.html
  • [PRV05] Ariel Pacetti and Fernando Rodriguez Villegas, Computing weight 2 modular forms of level $ p^2$, Math. Comp. 74 (2005), no. 251, 1545-1557 (electronic). With an appendix by B. Gross. MR 2137017 (2006a:11053), https://doi.org/10.1090/S0025-5718-04-01709-0
  • [PT07] Ariel Pacetti and Gonzalo Tornaría, Shimura correspondence for level $ p^2$ and the central values of $ L$-series, J. Number Theory 124 (2007), no. 2, 396-414. MR 2321370 (2008e:11055), https://doi.org/10.1016/j.jnt.2006.10.011
  • [Sa11] W.A. Stein et al, Sage Mathematics Software (Version 4.7.2), The Sage Development Team, 2011, http://www.sagemath.org.
  • [SW05] Jude Socrates and David Whitehouse, Unramified Hilbert modular forms, with examples relating to elliptic curves, Pacific J. Math. 219 (2005), no. 2, 333-364. MR 2175121 (2007c:11059), https://doi.org/10.2140/pjm.2005.219.333
  • [Vig76] Marie-France Vignéras, Simplification pour les ordres des corps de quaternions totalement définis, J. Reine Angew. Math. 286/287 (1976), 257-277. MR 0429841 (55 #2851)
  • [Vig80] Marie-France Vignéras, Arithmétique des algèbres de quaternions, Lecture Notes in Mathematics, vol. 800, Springer, Berlin, 1980 (French). MR 580949 (82i:12016)
  • [Voi10] John Voight, Identifying the matrix ring: algorithms for quaternion algebras and quadratic forms, 2010,
    http://arxiv.org/abs/1004.0994

Similar Articles

Retrieve articles in Mathematics of Computation with MSC (2010): 11R52

Retrieve articles in all journals with MSC (2010): 11R52


Additional Information

Ariel Pacetti
Affiliation: Departamento de Matemática, Universidad de Buenos Aires - Pabellón I, Ciudad Universitaria (C1428EGA), Buenos Aires, Argentina
Email: apacetti@dm.uba.ar

Nicolás Sirolli
Affiliation: Departamento de Matemática, Universidad de Buenos Aires - Pabellón I, Ciudad Universitaria (C1428EGA), Buenos Aires, Argentina
Email: nsirolli@dm.uba.ar

DOI: https://doi.org/10.1090/S0025-5718-2014-02796-8
Received by editor(s): June 20, 2011
Received by editor(s) in revised form: January 6, 2012, November 30, 2012, and January 21, 2013
Published electronically: January 9, 2014
Additional Notes: The first author was partially supported by PIP 2010-2012 GI and UBACyT X867
The second author was partially supported by a CONICET Ph.D. Fellowship
Article copyright: © Copyright 2014 American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.

American Mathematical Society