Remote Access Mathematics of Computation
Green Open Access

Mathematics of Computation

ISSN 1088-6842(online) ISSN 0025-5718(print)

Request Permissions   Purchase Content 
 
 

 

Period computations for covers of elliptic curves


Author: Simon Rubinstein-Salzedo
Journal: Math. Comp. 83 (2014), 2455-2470
MSC (2010): Primary 11G32, 11J70, 14H30, 14H52, 14Q05
DOI: https://doi.org/10.1090/S0025-5718-2014-02797-X
Published electronically: January 13, 2014
MathSciNet review: 3223341
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: In this article, we construct algebraic equations for a curve $ C$ and a map $ f$ to an elliptic curve $ E$, with pre-specified branching data. We do this by determining certain relations that the periods of $ C$ and $ E$ must satisfy and using these relations to approximate the coefficients to high precision. We then conjecture which algebraic numbers the coefficients are, and then we prove this conjecture to be correct.


References [Enhancements On Off] (What's this?)

  • [Bak67] A. Baker, Linear forms in the logarithms of algebraic numbers. I, II, III, Mathematika 13 (1966), 204-216; ibid. 14 (1967), 102-107; ibid. 14 (1967), 220-228. MR 0220680 (36 #3732)
  • [BB11] D. H. Bailey and J. M. Borwein, High-precision numerical integration: progress and challenges, J. Symbolic Comput. 46 (2011), no. 7, 741-754. MR 2795208 (2012f:65038), https://doi.org/10.1016/j.jsc.2010.08.010
  • [Bec89] Sybilla Beckmann, Ramified primes in the field of moduli of branched coverings of curves, J. Algebra 125 (1989), no. 1, 236-255. MR 1012673 (90i:11063), https://doi.org/10.1016/0021-8693(89)90303-7
  • [BL00] Jonathan M. Borwein and Petr Lisoněk, Applications of integer relation algorithms, Discrete Math. 217 (2000), no. 1-3, 65-82 (English, with English and French summaries). Formal power series and algebraic combinatorics (Vienna, 1997). MR 1766260 (2001b:65154), https://doi.org/10.1016/S0012-365X(99)00256-3
  • [BvdP95] Enrico Bombieri and Alfred J. van der Poorten, Continued fractions of algebraic numbers, Computational algebra and number theory (Sydney, 1992) Math. Appl., vol. 325, Kluwer Acad. Publ., Dordrecht, 1995, pp. 137-152. MR 1344927 (96g:11079)
  • [CG94] Jean-Marc Couveignes and Louis Granboulan, Dessins from a geometric point of view, The Grothendieck theory of dessins d'enfants (Luminy, 1993) London Math. Soc. Lecture Note Ser., vol. 200, Cambridge Univ. Press, Cambridge, 1994, pp. 79-113. MR 1305394 (96b:14015)
  • [DD97] Pierre Dèbes and Jean-Claude Douai, Algebraic covers: field of moduli versus field of definition, Ann. Sci. École Norm. Sup. (4) 30 (1997), no. 3, 303-338 (English, with English and French summaries). MR 1443489 (98k:11081), https://doi.org/10.1016/S0012-9593(97)89922-3
  • [Don11] Simon Donaldson, Riemann surfaces, Oxford Graduate Texts in Mathematics, vol. 22, Oxford University Press, Oxford, 2011. MR 2856237
  • [HS09] Frank Herrlich and Gabriela Schmithüsen, Dessins d'enfants and origami curves, Handbook of Teichmüller theory. Vol. II, IRMA Lect. Math. Theor. Phys., vol. 13, Eur. Math. Soc., Zürich, 2009, pp. 767-809. MR 2516744 (2010f:14036), https://doi.org/10.4171/055-1/19
  • [J$^+$10] Fredrik Johansson et al., mpmath: a Python library for arbitrary-precision floating-point arithmetic (version 0.14), February 2010, http://code.google.com/p/mpmath/.
  • [KZ01] Maxim Kontsevich and Don Zagier, Periods, Mathematics unlimited--2001 and beyond, Springer, Berlin, 2001, pp. 771-808. MR 1852188 (2002i:11002)
  • [LLL82] A. K. Lenstra, H. W. Lenstra Jr., and L. Lovász, Factoring polynomials with rational coefficients, Math. Ann. 261 (1982), no. 4, 515-534. MR 682664 (84a:12002), https://doi.org/10.1007/BF01457454
  • [McM05] Curtis T. McMullen, Teichmüller curves in genus two: the decagon and beyond, J. Reine Angew. Math. 582 (2005), 173-199. MR 2139715 (2006a:32017), https://doi.org/10.1515/crll.2005.2005.582.173
  • [PAR10] PARI/GP, version 2.3.5, Bordeaux, 2010, http://pari.math.u-bordeaux.fr/.
  • [Rob04] David P. Roberts, An $ ABC$ construction of number fields, Number theory, CRM Proc. Lecture Notes, vol. 36, Amer. Math. Soc., Providence, RI, 2004, pp. 237-267. MR 2076600 (2005k:11245)
  • [RS12a] Simon Rubinstein-Salzedo, Controlling ramification in number fields, 2012, Ph.D. thesis, http://www.math.dartmouth.edu/~simon/thesis.pdf.
  • [RS12b] Simon Rubinstein-Salzedo, Covers of elliptic curves with unique, totally ramified branch points, Mathematische Nachrichten, 2013, DOI 10.1002/mana.201200285.
  • [S$^+$10] W.A. Stein et al, Sage Mathematics Software (Version 4.5.1),
    The Sage Development Team, 2010, http://www.sagemath.org.
  • [Sym12] SymPy Development Team, SymPy: Python library for symbolic mathematics, 2012.
  • [Wol07] Wolfram Research, Inc., Champaign, Illinois, Mathematica, Version 6.0.1.0, 2007.
  • [Zor06] Anton Zorich, Flat surfaces, Frontiers in number theory, physics, and geometry. I, Springer, Berlin, 2006, pp. 437-583. MR 2261104 (2007i:37070), https://doi.org/10.1007/978-3-540-31347-2_13

Similar Articles

Retrieve articles in Mathematics of Computation with MSC (2010): 11G32, 11J70, 14H30, 14H52, 14Q05

Retrieve articles in all journals with MSC (2010): 11G32, 11J70, 14H30, 14H52, 14Q05


Additional Information

Simon Rubinstein-Salzedo
Affiliation: Department of Mathematics, Dartmouth College, Hanover, New Hampshire 03755
Email: simon.rubinstein-salzedo@dartmouth.edu

DOI: https://doi.org/10.1090/S0025-5718-2014-02797-X
Keywords: Number theory, algebraic geometry
Received by editor(s): October 17, 2012
Received by editor(s) in revised form: January 17, 2013, and January 28, 2013
Published electronically: January 13, 2014
Article copyright: © Copyright 2014 American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.

American Mathematical Society