Remote Access Mathematics of Computation
Green Open Access

Mathematics of Computation

ISSN 1088-6842(online) ISSN 0025-5718(print)

 
 

 

A search for primes $ p$ such that the Euler number $ E_{p-3}$ is divisible by $ p$


Author: Romeo Meštrović
Journal: Math. Comp. 83 (2014), 2967-2976
MSC (2010): Primary 11B75, 11A07; Secondary 11B65, 05A10
DOI: https://doi.org/10.1090/S0025-5718-2014-02814-7
Published electronically: February 12, 2014
MathSciNet review: 3246818
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Let $ p>3$ be a prime. Euler numbers $ E_{p-3}$ first appeared in H. S. Vandiver's work (1940) in connection with the first case of Fermat's Last Theorem. Vandiver proved that if $ x^p+y^p=z^p$ has a solution for integers $ x,y,z$ with $ \gcd (xyz,p)=1$, then it must be that $ E_{p-3}\equiv 0\,(\bmod \,p)$. Numerous combinatorial congruences recently obtained by Z.-W. Sun and Z.-H. Sun involve the Euler numbers $ E_{p-3}$. This gives a new significance to the primes $ p$ for which $ E_{p-3}\equiv 0\,(\bmod \,p)$.

For the computation of residues of Euler numbers $ E_{p-3}$ modulo a prime $ p$, we use a congruence which runs significantly faster than other known congruences involving $ E_{p-3}$. Applying this, congruence, via a computation in Mathematica 8, shows that there are only three primes less than $ 10^7$ that satisfy the condition $ E_{p-3}\equiv 0\,(\bmod \,p)$ (these primes are 149, 241 and 2946901). By using related computational results and statistical considerations similar to those used for Wieferich, Fibonacci-Wieferich and Wolstenholme primes, we conjecture that there are infinitely many primes $ p$ such that $ E_{p-3}\equiv 0\,(\bmod \,p)$.


References [Enhancements On Off] (What's this?)

  • [1] J. P. Buhler and D. Harvey, Irregular primes to 163 million, Math. Comp. 80 (2011), no. 276, 2435-2444. MR 2813369 (2012j:11243), https://doi.org/10.1090/S0025-5718-2011-02461-0
  • [2] L. Carlitz, Note on irregular primes, Proc. Amer. Math. Soc. 5 (1954), 329-331. MR 0061124 (15,778b)
  • [3] Richard Crandall, Karl Dilcher, and Carl Pomerance, A search for Wieferich and Wilson primes, Math. Comp. 66 (1997), no. 217, 433-449. MR 1372002 (97c:11004), https://doi.org/10.1090/S0025-5718-97-00791-6
  • [4] François G. Dorais and Dominic Klyve, A Wieferich prime search up to $ 6.7\times 10^{15}$, J. Integer Seq. 14 (2011), no. 9, Article 11.9.2, 14. MR 2859986
  • [5] R. Ernvall and T. Metsänkylä, Cyclotomic invariants and $ E$-irregular primes, Math. Comp. 32 (1978), no. 142, 617-629. MR 482273 (80c:12004a), https://doi.org/10.2307/2006171
  • [6] R. Ernvall and T. Metsänkylä, On the $ p$-divisibility of Fermat quotients, Math. Comp. 66 (1997), no. 219, 1353-1365. MR 1408373 (97i:11003), https://doi.org/10.1090/S0025-5718-97-00843-0
  • [7] J.W.L. Glaisher, On the residues of the sums of products of the first $ p-1$ numbers, and their powers, to modulus $ p^2$ or $ p^3$, Q. J. Math. 31 (1900), 321-353.
  • [8] Andrew Granville, Some conjectures related to Fermat's last theorem, Number theory (Banff, AB, 1988) de Gruyter, Berlin, 1990, pp. 177-192. MR 1106660 (92k:11036)
  • [9] Max Gut, Eulersche Zahlen und grosser Fermat'scher Satz, Comment. Math. Helv. 24 (1950), 73-99 (German). MR 0037316 (12,243d)
  • [10] Emma Lehmer, On congruences involving Bernoulli numbers and the quotients of Fermat and Wilson, Ann. of Math. (2) 39 (1938), no. 2, 350-360. MR 1503412, https://doi.org/10.2307/1968791
  • [11] Richard J. McIntosh, On the converse of Wolstenholme's theorem, Acta Arith. 71 (1995), no. 4, 381-389. MR 1339137 (96h:11002)
  • [12] Richard J. McIntosh and Eric L. Roettger, A search for Fibonacci-Wieferich and Wolstenholme primes, Math. Comp. 76 (2007), no. 260, 2087-2094 (electronic). MR 2336284 (2008k:11008), https://doi.org/10.1090/S0025-5718-07-01955-2
  • [13] R. Meštrović, An extension of a congruence by Kohnen, 13 pages, preprint arXiv:1109.2340v3 [math.NT] (2011).
  • [14] Paulo Ribenboim, 13 lectures on Fermat's last theorem, Springer-Verlag, New York, 1979. MR 551363 (81f:10023)
  • [15] N.J.A. Sloane, Sequence A198245 in OEIS (On-Line Encyclopedia of Integer Sequences), http://oeis.org/A198245.
  • [16] H. M. Srivastava and Junesang Choi, Series associated with the zeta and related functions, Kluwer Academic Publishers, Dordrecht, 2001. MR 1849375 (2003a:11107)
  • [17] Zhi-Hong Sun, Congruences concerning Bernoulli numbers and Bernoulli polynomials, Discrete Appl. Math. 105 (2000), no. 1-3, 193-223. MR 1780472 (2001m:11022), https://doi.org/10.1016/S0166-218X(00)00184-0
  • [18] Zhi-Hong Sun, Congruences involving Bernoulli and Euler numbers, J. Number Theory 128 (2008), no. 2, 280-312. MR 2380322 (2008m:11044), https://doi.org/10.1016/j.jnt.2007.03.003
  • [19] Zhi Hong Sun and Zhi-Wei Sun, Fibonacci numbers and Fermat's last theorem, Acta Arith. 60 (1992), no. 4, 371-388. MR 1159353 (93e:11025)
  • [20] Zhi-Wei Sun, Binomial coefficients, Catalan numbers and Lucas quotients, Sci. China Math. 53 (2010), no. 9, 2473-2488. MR 2718841 (2011k:05015), https://doi.org/10.1007/s11425-010-3151-3
  • [21] Zhi-Wei Sun, On Delannoy numbers and Schröder numbers, J. Number Theory 131 (2011), no. 12, 2387-2397. MR 2832831 (2012m:11004), https://doi.org/10.1016/j.jnt.2011.06.005
  • [22] Zhi-Wei Sun, Super congruences and Euler numbers, Sci. China Math. 54 (2011), no. 12, 2509-2535. MR 2861289, https://doi.org/10.1007/s11425-011-4302-x
  • [23] Zhi-Wei Sun, On congruences related to central binomial coefficients, J. Number Theory 131 (2011), no. 11, 2219-2238. MR 2825123, https://doi.org/10.1016/j.jnt.2011.04.004
  • [24] Z.-W. Sun, A refinement of a congruence result by van Hamme and Mortenson, accepted for publication in Illinois J. Math.; preprint arXiv:1011.1902v5 [math.NT] (2011).
  • [25] H. S. Vandiver, Note on Euler number criteria for the first case of Fermat's last theorem, Amer. J. Math. 62 (1940), 79-82. MR 0001231 (1,200d)

Similar Articles

Retrieve articles in Mathematics of Computation with MSC (2010): 11B75, 11A07, 11B65, 05A10

Retrieve articles in all journals with MSC (2010): 11B75, 11A07, 11B65, 05A10


Additional Information

Romeo Meštrović
Affiliation: Maritime Faculty, University of Montenegro, Dobrota 36, 85330 Kotor, Montenegro
Email: romeo@ac.me

DOI: https://doi.org/10.1090/S0025-5718-2014-02814-7
Keywords: Euler number, $E_{p-3}$, congruence modulo a prime, supercongruence, Fermat quotient
Received by editor(s): December 31, 2012
Received by editor(s) in revised form: January 5, 2013, and February 6, 2013
Published electronically: February 12, 2014
Article copyright: © Copyright 2014 American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.

American Mathematical Society