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ON THE DISTRIBUTION OF EIGENVALUES OF MAASS

FORMS ON CERTAIN MOONSHINE GROUPS

JAY JORGENSON, LEJLA SMAJLOVIĆ, AND HOLGER THEN

Abstract. In this paper we study, both analytically and numerically, ques-
tions involving the distribution of eigenvalues of Maass forms on the moonshine
groups Γ0(N)+, where N is a positive, square-free integer. After we prove that
Γ0(N)+ has one cusp, we compute the constant term of the associated non-
holomorphic Eisenstein series. We then derive an “average” Weyl’s law for the
distribution of eigenvalues of Maass forms, from which we prove the “classi-
cal” Weyl’s law as a special case. The groups corresponding to N = 5 and

N = 6 have the same signature; however, our analysis shows that, asymptot-
ically, there are infinitely more cusp forms for Γ0(5)+ than for Γ0(6)+. We
view this result as being consistent with the Phillips-Sarnak philosophy since
we have shown, unconditionally, the existence of two groups which have dif-
ferent Weyl’s laws. In addition, we employ Hejhal’s algorithm, together with
recently developed refinements from [H. Then, Computing large sets of consec-
utive Maass forms, in preparation], and numerically determine the first 3557
eigenvalues of Γ0(5)+ and the first 12474 eigenvalues of Γ0(6)+. With this
information, we empirically verify some conjectured distributional properties
of the eigenvalues.

1. Introduction

Let {pi}, with i = 1, . . . , r, be a set of distinct primes, such that N = p1 · · · pr is
a square-free, non-negative integer. The subset of SL(2,R), defined by

Γ0(N)+ :=

{
e−1/2

(
a b
c d

)
∈ SL(2,R) :

ad− bc = e, a, b, c, d, e ∈ Z, e | N, e | a, e | d, N | c
}

is an arithmetic subgroup of SL(2,R). The groups Γ0(N)+ were first considered by
Helling [19] where it was proved that if a subgroup G ⊆ SL(2,R) is commensurable
with SL(2,Z), then there exists a square-free, non-negative integer N such that G
is a subgroup of Γ0(N)+. We also refer to page 27 of [28] where the groups Γ0(N)+

are cited as examples of groups which are commensurable with SL(2,Z) but not
necessarily conjugate to a subgroup of SL(2,Z).

Following the discussion in [10–13, 15], we employ the term “moonshine group”
when discussing Γ0(N)+. The genus zero moonshine subgroups of SL(2,R) arise in
the “monstrous moonshine” conjectures of Conway and Norton, which were later
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proved in the celebrated work of Borcherds. Gannon’s book [15] provides an excel-
lent discussion of the mathematics and mathematical history of monstrous moon-
shine. In particular, we refer to Conjecture 7.1.1 where the Conway-Norton conjec-
ture is stated, which in its original form referred to certain genus zero subgroups of
Moonshine-type. After the work of Borcherds, the authors in [10] described solely
in group-theoretic terms the 171 genus zero subgroups that appear in mathematics
of “monstrous moonshine”. Amongst this list are those groups of the form Γ0(N)+

which have genus zero.
Our interest in the groups Γ0(N)+ stems from the work in [23]. In that article,

the groups Γ0(5)
+ and Γ0(6)

+ were examples of arithmetically defined topologi-
cally equivalent groups which have distinct spectral properties. More specifically,
in [23] the authors defined an invariant associated to any non-compact, finite vol-
ume hyperbolic Riemann surface, where the invariant is equal to the larger of two
quantities: one coming from the length spectrum and another associated to the de-
terminant of the scattering matrix. The groups Γ0(5)

+ and Γ0(6)
+ have the same

signature and are arithmetically defined, yet have different values of the invariant
defined in [23]. As a result, the main theorem of [23] showed that, in somewhat
vague terms, the derivative of the Selberg zeta function of one surface has more
zeros than the derivative of the Selberg zeta function of the other. Since the spec-
trum of a surface is measured by the zeros of the Selberg zeta function, the main
result of [23] can be interpreted as saying that surfaces Γ0(5)

+ and Γ0(6)
+ are quite

different from the point of view of the asymptotics of spectral analysis.
In somewhat vague terms, the purpose of the present article is to investigate

the spectral properties of the Riemann surfaces associated to the groups Γ0(N)+

for square-free N in order to make precise the observations made in [23]. In doing
so, we employ the ideas from [32] which build on Hejhal’s algorithm for numeri-
cally estimating eigenvalues of the Laplacian on finite volume, hyperbolic Riemann
surfaces. With this said, we now can describe the main results.

Let Γ0(N)+ = Γ0(N)+/{±I}, where I is the identity matrix and let XN :=

Γ0(N)+\H be the corresponding two-dimensional surface. Since Γ0(N) ⊆ Γ0(N)+,
where Γ0(N) denotes the classical congruence subgroup of SL(2,Z), the surface XN

has finite volume. As stated, we will show that for any square-free N , the surface
XN has exactly one cusp; hence the signature of Γ0(N)+ is (g;m1, . . . ,ml; 1) where
g denotes the genus of the group and l is the number of inequivalent elliptic elements
of Γ0(N)+ with mi, i = 1, . . . , l denoting the order of the corresponding elliptic
element.

Maass forms on Γ0(N)+ are real analytic, square integrable, eigenfunctions of
the Laplacian on the surface XN . Maass forms which vanish in the cusp are called
Maass cusp forms. The hyperbolic Laplacian −Δ on XN has a discrete and con-
tinuous spectrum; see [21] or [17]. The discrete spectrum is denoted by the set
{λn}n≥0, counted with multiplicities; here, we have that 0 = λ0 < λ1 ≤ . . . ≤
λnN−1 < 1/4 ≤ λnN

≤ . . . and λn → ∞ as n → ∞. Let m1/4,N ≥ 0 denote the
multiplicity of λ = 1/4 as an (eventual) eigenvalue of −Δ. Maass cusp forms span
the positive discrete part of the spectrum.

Let {rn} denote the set of all positive real numbers satisfying the equation 1/4+
r2n = λn. For T > 0, the function NN (T ) := NN [0 < rn ≤ T ] counts the number of
rn such that 0 < rn ≤ T , or, equivalently, the number of eigenvalues of Maass cusp
forms which lie in the interval (1/4, T 2 + 1/4].
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For any T > 0 and square-free N , which we write as N = p1 · · · pr, define

αN (j, T ) := T log pj − �T log pj

π 	π where �x	 denotes the greatest integer less than
or equal to x.

The main analytical result of the paper is the following theorem:

Theorem 1 (Average Weyl’s law for Γ0(N)+). Let (g;m1, . . . ,ml; 1) be the signa-
ture of the group Γ0(N)+ and let nN ≥ 1 denote the number of small eigenvalues
of the Laplacian −Δ on XN . Then

NN (T ) = MN (T ) + SN (T )

where

MN (T ) =
Vol(XN )

4π
T 2 − 2T log T

π
+

T

π
(2 + log(π/2N))

+

l∑
i=1

1

4mi

mi−1∑
j=1

1

sin2(πj/mi)
− Vol(XN )

48π

−m1/4,N − 3

4
− nN

2
+

1

2π

r∑
j=1

αN (j, T )

− 1

π

r∑
j=1

arctan

⎛
⎜⎝(√

pj − 1
√
pj + 1

)(−1)�
T log pj

π
�

tan

(
αN (j, T )

2

)⎞⎟⎠+GN (T ),

with

|GN (T )| ≤ 1

2π

⎛
⎝Vol(XN )(2π + 1)

2π2 exp(2π)
+

l∑
i=1

mi

2eπ

mi−1∑
j=1

1

sin(πj/mi)
+

5051

900

⎞
⎠ · 1

T
,(1)

for all T > 1 and

T∫
0

SN (t)dt = O

(
T

log2 T

)
as T → ∞.

The word “average” in the title of our main theorem relates to the form of the
error term in Weyl’s law. An average Weyl’s law is of importance when it comes
to the numerical computation of Maass forms; see [32] and references therein. In
particular, when computing Maass cusp forms numerically, there is always the
risk that some solutions get overlooked. By comparing a numerically found list of
eigenvalues of Maass cusp forms with average Weyl’s law, one can easily determine
the number of solutions which have been overlooked. We refer to [32] for a detailed
discussion of this point.

An immediate consequence of Theorem 1 and its proof is the following corollary.

Corollary 2 (Classical Weyl’s law for Γ0(N)+).

NN (T )=
Vol(XN )

4π
T 2 − 2T log T

π
+

T

π
(2 + log(π/2N)) +O

(
T

log T

)
, as T →∞.

Generally speaking, the philosophy behind the Phillips-Sarnak conjecture [26,27]
suggests that the spectral analysis of the Laplacian acting on smooth functions on
a finite volume, hyperbolic Riemann surface M should depend on the arithmetic
nature of the underlying Fuchsian group Γ. The first terms in the asymptotic
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expansion in Corollary 2 depend solely on the volume of XN , and then one sees
that the coefficient of T depends on N . For example, the groups corresponding to
N = 5 and N = 6 have the same signature, hence X5 and X6 have the same volume
yet, by Corollary 2, X5 has infinitely more eigenvalues than X6 in the sense that

lim
T→∞

π

T
(N5(T )−N6(T )) = log(6/5) > 0.

Later in this article, we provide a list of further examples of topologically equivalent
surfaces associated to moonshine groups which have different Weyl’s laws. We
view these results as being consistent with and in support of the Phillips-Sarnak
philosophy.

Having established that the classical Weyl’s law associated to Γ0(5)
+ and Γ0(6)

+

differ, we find it interesting to investigate other conjectures concerning the distri-
bution of eigenvalues. Using the methodology from [32], and references therein,
we have numerically computed sets of Maass cusp forms associated to Γ0(5)

+ and
Γ0(6)

+. On Γ0(5)
+ our numerical results cover the range 0 < λ ≤ 1252 + 1/4

which includes 3557 Maass cusp forms, and on Γ0(6)
+ we cover the range 0 <

λ ≤ 2302 + 1/4 which includes 12474 Maass cusp forms. The distribution of the
numerically found eigenvalues is in agreement with the following conjecture.

Conjecture 3 (Arithmetic quantum chaos [3,5]). On surfaces of constant negative
curvature that are generated by arithmetic fundamental groups, the distribution of
the discrete eigenvalues of the hyperbolic Laplacian approaches a Poisson distribu-
tion as λ → ∞.

A particular feature of a Poisson distribution is the “absence of memory”, which,
in our case, asserts that an eigenvalue cannot be predicted from knowledge of all
the previous eigenvalues. The computation of eigenvalues allows us to verify that,
numerically, eigenvalues of the Laplacian on X5 and X6 are uncorrelated.

This paper is organized as follows. In Section 2 we provide preliminary ma-
terial for both the theoretical and numerical aspects of our work. Theoretically,
we prove that the Riemann surfaces associated to the moonshine groups Γ0(N)+

for square-free N have one cusp, and we compute the first Fourier coefficient of
the corresponding non-holomorphic Eisenstein series. In order to make this article
as self-contained as possible, we include a discussion of Hejhal’s algorithm for nu-
merically estimating eigenvalues together with Turing’s method, which is used to
verify that no eigenvalue has been missed. In section 3 we prove Theorem 1, and as
corollaries state the result in the cases of SL(2,Z), Γ0(5)

+ and Γ0(6)
+. In section

4 we state the conclusions from our numerical investigations, and in section 5 we
present various concluding remarks.

2. Preliminaries

2.1. Moonshine groups Γ0(N)+. In this subsection we will derive some impor-
tant properties of moonshine groups Γ0(N)+, for a square-free integer N . We will
prove they have exactly one cusp. We then compute the constant Fourier coefficient
of the associated non-holomorphic Eisenstein series. Equivalently, we compute the
scattering determinant associated to the cusp. We refer to [17] and [21] for relevant
background information.

The article [24] provides an in-depth study of the signature of Γ0(N)+ for any
N , not necessarily square-free. In particular, section 2 of [24] relates the number of
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cusps of Γ0(N)+ to the number of cusps of Γ0(N), which can be computed using
Proposition 1.43 of [28]. When N is square-free, one concludes that Γ0(N)+ has
one cusp for square-free N . For the convenience of the reader, we will provide an
elementary proof of this result, which is significant in our study.

Lemma 4. For every square-free integer N > 1, the surface XN has exactly one
cusp, which can be taken to be at i∞.

Proof. The cusps ofXN are uniquely determined by parabolic elements of the group
Γ0(N)+. In [12] it is proved that all parabolic elements of Γ0(N)+ have integral
entries. Therefore, the parabolic elements of Γ0(N)+ are also parabolic elements of
the congruence group Γ0(N). From pages 44–47 of [21], we easily deduce that the

only possible cusps of Γ0(N)+\H belong to the set {0, i∞} ∪ {1/v : v | N}. The
point z = 0 is mapped to i∞ by involution(

0 −1/
√
N√

N 0

)
∈ Γ0(N)+.

For an arbitrary v | N and w = N/v one has (w, v) = 1 since N is square-
free. By Euclid’s algorithm, there exists integers a and b such that −aw − bv = 1.
Therefore, points z = 1/v are mapped to i∞ by transformation

1√
w

(
aw b
N −w

)
∈ Γ0(N)+.

This shows that all possible cusps of Γ0(N)+\H are Γ0(N)+-equivalent with i∞.

Therefore Γ0(N)+\H has exactly one cusp which can be taken to be i∞, as claimed.
�

Let ζ(s) denote the (classical) Riemann zeta function and let ξ(s) be the com-
pleted zeta function, defined by ξ(s) := 1

2s(s− 1)π−s/2Γ(s/2)ζ(s).

Lemma 5. For a square-free, positive integer N = p1 · · · pr, the scattering deter-
minant associated to the cusp of XN at i∞ is given by the expression

ϕN (s) =
s

s− 1

ξ(2s− 1)

ξ(2s)
·DN (s),(2)

where

DN (s) :=
1

Ns
·

r∏
j=1

psj + pj

psj + 1
.

Proof. By Theorem 3.4 from [21] we write ϕN (s) =
√
πΓ(s − 1/2)Γ(s)−1HN (s),

where HN (s) denotes the Dirichlet series portion of the scattering determinant.
Let CN denote the set of left lower entries of matrices from Γ0(N)+. Following
pages 45–49 from [21], one sees that

HN (s) =
∑
c∈CN

c−2sAN (c)

is well defined for Re(s) > 1, where AN (c) is equal to the number of distinct values
of d modulo c such that c and d are elements of the bottom row of the matrix from
Γ0(N)+.

From the definition of Γ0(N)+, we easily deduce that CN = {(N/
√
v) · n : v |

N,n ∈ N}.
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For a fixed c = (N/
√
v) · n, with v | N and n ∈ N arbitrary, we can take e = v

in the definition of Γ0(N)+ to deduce that matrices from Γ0(N)+ with left lower
entry c are given by ( √

va b/
√
v

N
v

√
vn

√
vd

)

for some integers a, b and d such that vad− (N/v)bn = 1. Therefore, the number
AN ((N/

√
v) ·n) is equal to the number of distinct solutions d modulo (N/v)n of the

equation vad − (N/v)bn = 1. Since N is square-free, this equation has a solution
if and only if (v, n) = 1 and (d, (N/v)n) = 1. In this case, the number of distinct
solutions d modulo (N/v)n is equal to ϕ((N/v)n). Here, ϕ denotes the Euler totient
function and (p, q) denotes the greatest common divisor of integers p and q.

Therefore, AN ((N/
√
v) · n) = 0 if (v, n) �= 1 and AN ((N/

√
v) · n) = ϕ((N/v)n)

if (v, n) = 1. Now, we may conclude that

HN (s) =
∑
v|N

∑
(n,v)=1

ϕ
(
N
v n

)
(
N
v

√
vn

)2s .
The inner sum on the right-hand side of the above equation may be expressed us-

ing computations from [17], specifically Lemmata 4.5 and 4.6 on page 535, showing
that for positive integers A1, A2, B1 and B2 one has

(3)
∑

c0>0: (c0,(B1,A2)(A1,B2))=1

ϕ(c0 · (B1, B2)(A1, A2))

c2s0 (A1, A2)s(B1, B2)2s

=
ζ(2s− 1)

ζ(2s)
·

∏
p|(A1,A2)(B1,B2)

(
p− 1

p2s − 1

) ∏
p|(A2,B1)(A1,B2)

(
ps − p1−s

p2s − 1

)
;

in standard notation, p denotes a prime number, and an empty product is defined
to be equal to 1.

Using formula (3) with A1 = v, A2 = 1; B1 = N/v, B2 = N and the principle of
mathematical induction with respect to the number r of distinct prime factors of
N = p1 · · · pr, we deduce that

HN (s) =
ζ(2s− 1)

ζ(2s)
·
∑
v|N

⎛
⎜⎝ ∏

p|(N
v )

p− 1

p2s − 1

∏
p|v

ps − p1−s

p2s − 1

⎞
⎟⎠

=
ζ(2s− 1)

ζ(2s)
· 1

Ns
·

r∏
j=1

psj + pj

psj + 1
.

Therefore, the scattering matrix ϕN (s), for Re(s) > 1 is given by

ϕN (s) =
√
π
Γ(s− 1/2)

Γ(s)
· ζ(2s− 1)

ζ(2s)
·DN (s),

The statement of the lemma follows from the definition of the completed zeta
function, which completes the proof of the lemma. �

Remark 6. The determinant of the scattering matrix for congruence subgroups has
been computed by Hejhal [17] and Huxley [20].
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Figure 1. Dirichlet fundamental domains of the moonshine
groups Γ0(5)

+ (left), and Γ0(6)
+ (right).

2.2. Moonshine groups Γ0(5)
+ and Γ0(6)

+. The moonshine group Γ0(5)
+ is

generated by

g1 =

(
1 1
0 1

)
, g2 =

1√
5

(
5 −1
5 0

)
, g3 =

1√
5

(
5 −3
10 −5

)
,

and the moonshine group Γ0(6)
+ is generated by

g1 =

(
1 1
0 1

)
, g2 =

1√
6

(
6 −1
6 0

)
, g3 =

1√
3

(
3 −2
6 −3

)
;

see [13]. Fundamental domains of X5 = Γ0(5)+\H and X6 = Γ0(6)+\H are dis-
played in Figure 1. For both, X5 and X6, the sides are identified according to the
pairings

g1 : s1 → s6, g2 : s2 → s5, g3 : s3 → s4.

Both X5 and X6 have a cusp at v1 = i∞, and each surface has three inequivalent
elliptic fixed points which are all of order 2. The elliptic fixed points are

g−1
1 g2 : v2 → v2 which is Γ-equivalent with v6 = g1v2,

g−1
2 g3 : v3 → v3 which is Γ-equivalent with v5 = g3v3,

g3 : v4 → v4.

By the Gauss-Bonnet theorem, the volumes of the surfaces are Vol(X5) = π and
Vol(X6) = π.

2.3. Strömbergsson’s pullback algorithm. In 2000, Strömbergsson [30] pre-
sented an algorithm for computing the pullback of any point z ∈ H into the Dirichlet
fundamental domain of a given cofinite Fuchsian group Γ with prescribed genera-
tors. Strömbergsson’s algorithm uses only the action of generators of the group Γ
applied to the point z, and the algorithm is shown to converge after a finite number
of iterations. Computation of the pullback of a point z ∈ H to the Dirichlet fun-
damental domain of Γ is an ingredient in Hejhal’s algorithm for computing Maass
forms, recalled below. Therefore, Strömbergsson’s algorithm is an important part
of our numerical computations of eigenvalues of Maass forms on X5 and X6.

For the sake of completeness, we will recall the Strömbergsson algorithm in its full
generality. Assume that Γ is a cofinite Fuchsian group with generators g1, . . . , gn
and a set of elliptic fixed points E. Let d(z, w) denote the hyperbolic distance
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between two points z and w in H. The associated Dirichlet fundamental domain is
the set

F = {z ∈ H | d(p, z) ≤ d(p, γz) ∀γ ∈ Γ},
where p ∈ H − E is arbitrary. The given generators of Γ identify the sides of F.
Strömbergsson’s algorithm for computing the pullback of any point z ∈ H into F is
the following.

Algorithm 7 (Pullback algorithm [30]). Choose any z ∈ H.

(1) Compute the 2n points g1z, g
−1
1 z, g2z, g

−1
2 z, . . . , g−1

n z. Let z′ be the point
which has the smallest hyperbolic distance to p.

(2) If d(p, z′) < d(p, z), then replace z by z′, and repeat with step 1.
(3) If d(p, z′) ≥ d(p, z), then we know that z lies in F, hence z is the desired

point, i.e., the pullback of the point initially selected.

Strömbergsson proved that his algorithm always finds the pullback within a finite
number of operations [30].

We use z∗ = x∗ + iy∗ to denote the pullback of z = x+ iy.

2.4. Maass forms on Γ0(N)+. Let us recall the definition of Maass forms [25]
and Maass cusp forms.

Definition 8. f : H → R is a Maass form on Γ0(N)+ associated to the eigenvalue
λ if and only if

i) f ∈ C∞(H),
ii) f ∈ L2(XN ),
iii) −Δf(z) = λf(z),
iv) f(γz) = f(z) ∀γ ∈ Γ0(N)+.

Definition 9. f : H → R is a Maass cusp form on Γ0(N)+ if and only if

i) f is a Maass form on Γ0(N)+,
ii) limz→i∞ f(z) = 0.

For z = x + iy ∈ H, the Fourier expansion of a Maass cusp form associated to
the eigenvalue λ = r2 + 1/4 is given by

f(x+ iy) =
∑

n∈Z\{0}
any

1/2Kir(2π|n|y)e2πinx,(4)

where K stands for the K-Bessel function. Since a Maass form is real analytic, we
have Re a−n = Re an and Im a−n = − Im an.

As first proved in [25], the spectral coefficients an grow at most polynomially in
n. The K-Bessel function decays exponentially for large arguments, meaning

Kir(y) ∼
√

π

2y
e−y for y → ∞.

As a result, one can obtain a very good approximation of the expansion (4) by
using finitely many terms, where the number of terms considered depends on the
desired accuracy of the approximation.

Let FN � Γ0(N)+\H be the fundamental domain of Γ0(N)+. Let z∗ = x∗ + iy∗

be the Γ0(N)+-pullback of the point z = x + iy into the fundamental domain,
meaning there exists some γ ∈ Γ0(N)+ such that z∗ = γz and z∗ ∈ FN . By the
definition of automorphy, we have that f(z) = f(z∗).
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Since the congruence group Γ0(N) is a subgroup of Γ0(N)+, we immediately
deduce that if f is a Maass form on Γ0(N)+, then f is a Maass form on Γ0(N).

2.5. Hecke operators. Let us recall the definition of Hecke operators. There are
many references for this material, one of which is [28].

Definition 10. Let f : H → R, and let n be a positive integer. The Hecke operator
Tn is defined by

Tnf(z) =
1√
n

∑
ad=n
d>0

d−1∑
b=0

f(
az + b

d
).

Theorem 11 ([1,28]). Consider the congruence group Γ0(N). For all n such that
(n,N) = 1, the Hecke operators Tn are endomorphisms of the space of Maass cusp
forms on Γ0(N). For all m and n with (m,N) = (n,N) = 1 and all Maass cusp
forms f(z) on Γ0(N), the Hecke operators have the following properties:

TmTn =
∑

d|(m,n)

Tmn
d2

,

Tn ◦Δ = Δ ◦ Tn,

Tnf(z) = tnf(z),

where the eigenvalues tn of the Hecke operators Tn are related to the expansion
coefficients an of the Maass cusp form f(z) by the identity

an = a1tn.

For a proof of the theorem, see [1], [28], or [29].
Theorem 11 immediately implies that the Fourier coefficients of Maass cusp forms

on Γ0(N) are multiplicative,

aman = a1
∑

d|(m,n)
d>0

amn
d2

for all m and n with (m,N) = (n,N) = 1. This relation holds also for Maass cusp
forms on Γ0(N)+ because, as stated, the Maass cusp forms on Γ0(N)+ embed into
the space of Maass cusp forms on Γ0(N).

2.6. Hejhal’s algorithm. We make use of Hejhal’s algorithm [18,31] which itself
employs the Fourier expansion (4) of Maass cusp forms.

Hejhal’s algorithm is a finite system of linear equations whose non-trivial solu-
tions are related to Maass cusp forms. Hejhal’s algorithm is heuristic. By construc-
tion, a Maass cusp form will always solve the linear equations of the algorithm to
any desired level of accuracy, but the converse is not true. Not every solution of
the finite system of linear equations is a Maass cusp form. Only in the case when
a solution is independent of the parameters will the solution approximate a Maass
cusp form. The crucial parameter in question is the choice of the value of y in (8).
The computation of Maass cusp forms therefore proceeds in two steps: Heuristic
use of Hejhal’s algorithm, followed by a verification of the numerical results.

Theoretically, Maass cusp forms can be rigorously certified as was shown in [9]
in the example of the modular group. Using the quasi-mode construction, Booker,
Strömbergsson, and Venkatesh have certified the first 10 eigenvalues of SL(2,Z).
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The certification techniques can be adopted to other settings, such as to the moon-
shine groups. Practically, however, we have to bear in mind that rigorously certify-
ing eigenvalues requires immense computer resources and it is infeasible to certify
thousands of Maass cusp forms. For this reason, we just verify the numerical results
with a different, not fully rigorous method.

The verification is based on the following:

(1) Fix y.
(2) Find non-trivial solutions of Hejhal’s system of linear equations.
(3) Take a finite number of different values of y, and check whether the non-

trivial solutions seem to be independent of y.
(4) Take only the solutions which are seemingly independent of y and make a

list of conjectured Maass cusp forms.

In the end, there will be strong evidence, but not a proof, that the list of conjectured
Maass cusp forms is indeed a list of true Maass cusp forms. It is the experience of
those who implement the algorithm that more than half of the non-trivial solutions
of Hejhal’s system of equations for a fixed value of y are not Maass cusp forms.
Taking a second choice for y immediately rules out almost all solutions which are
not a Maass cusp form.

There remains the possibility that a solution could solve Hejhal’s linear system of
equations for two independent values of y whilest not being a Maass cusp form. We
have further checked whether this has happened by employing several independent
values of y. Empirically, it turned out that as soon as some function solves Hejhal’s
system of equations for two independent values of y, it does so for any finite number
of independent values of y also; and we conjecture that it does so for any other value
of y.

Further evidence comes from a second verification based on the Hecke operators.
According to the Hecke operators, the expansion coefficients of Maass forms are
multiplicative. When solving Hejhal’s system of linear equations, there is no reason
that the coefficients of a solution are multiplicative, but only those solutions whose
coefficients are multiplicative can be Maass cusp forms.

Numerically, for each individual solution of Hejhal’s system of linear equations
we have investigated and found that a solution is seemingly independent of y if
and only if the expansion coefficients of the solution are multiplicative. This means
both verifications agree in their answer.

Let us now recall Hejhal’s algorithm.
Since Γ0(N)+ is cofinite and has only one cusp at i∞, we can bound y from

below. Allowing for a small numerical error of at most [[ε]], where [[ε]] stands for
|numerical error| � ε, due to the exponential decay of the K-Bessel function in y,
we can truncate the absolutely convergent Fourier expansion (4) such that

f(x+ iy) =
∑

0�=|n|≤M(ε,r,y)

any
1/2Kir(2π|n|y)e2πinx + [[ε]].(5)

Solving for the spectral coefficients results in the equation

amy1/2Kir(2π|m|y) = 1

2Q

2Q∑
j=1

f(
j

2Q
+ iy)e−2πim j

2Q + [[ε]],(6)

with 2Q > M +m.
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By automorphy, any Maass cusp form can be approximated by

f(x+ iy) = f(x∗ + iy∗) =
∑

0�=|n|≤M0

any
∗1/2Kir(2π|n|y∗)e2πinx

∗
+ [[ε]],(7)

where y∗ is always larger than or equal to the height of the lowest point of the funda-
mental domain F, allowing us to replace M(ε, r, y∗) by M0 = M(ε, r,minw∈F Imw).

Making use of the implicit automorphy by replacing f(x + iy) in (6) with the
right-hand side of (7) yields

amy1/2Kir(2π|m|y) = 1

2Q

2Q∑
j=1

∑
0�=|n|≤M0

any
∗
j
1/2Kir(2π|n|y∗j )e2πi(nx

∗
j−mxj) + [[2ε]],

(8)

where xj + iyj =
j
2Q + iy, for 0 �= |m| ≤ M(ε, r, y), which is the central identity of

the algorithm.
We are looking for non-trivial solutions numerically such that (8) vanishes si-

multaneously for all 0 �= |m| ≤ M0 and 0 < y < minw∈F Imw. Each non-trivial
solution gives a Maass cusp form whose eigenvalue reads λ = r2 + 1/4.

We first solve (8) for all 0 �= |m| ≤ M0 numerically, but use a single value of y
only. Then, we verify with a finite number of values of y, whether we have found
a non-trivial solution such that (8) vanishes simultaneously for all 0 �= |m| ≤ M0

for each value of y. If the solution turns out to be seemingly independent of y,
we finally check whether the expansion coefficients an are multiplicative. If, in
addition, the expansion coefficients turn out to be multiplicative, we have verified
that the numerically found solution of (8) is a Maass cusp form.

Let us now specify good parameter values for solving (8) numerically.

Algorithm 12 (Parameter values). Let λ̃ = t2 + 1/4 be close to an eigenvalue.

Let the precision be given by ε > 0. Then for λ near λ̃ we choose the values of the
parameters as follows:

(1) Solve εKit(max{t, 1})=Kit(2πM0minw∈F Imw) in M0 with 2πM0 minw∈F

Imw > max{t, 1}.
(2) Let y =

9

10

max{t, 1}
2πM0

.

(3) Solve εKit(max{t, 1}) = Kit(2πMy) in M with 2πMy > max{t, 1}, i.e.,

M =
minw∈F Imw

y
M0.

(4) Let Q be the smallest integer which is larger than M .
(5) Check whether (8) is well conditioned for the given y and all 0 �= |m| ≤ M0.

If not, reduce y slightly and repeat with 3.

For verifying that (8) vanishes simultaneously for all 0 �= |m| ≤ M0 for a fi-

nite number of values of y, we use y =
max{t, 1}
2πM0

, and check whether (8) is

well conditioned. If (8) is not well conditioned, we reduce y slightly. The algo-
rithm ensures that we never reduce y by a factor of 9/10 or more. Now we check
whether (8) vanishes simultaneously for all 0 �= |m| ≤ M0 for the given y. If (8)
does vanish, we continue with a finite number of random choices for the value of
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y ∈
( 9

10

max{t, 1}
2πM0

,min
w∈F

Imw
]
and check for each value of y whether (8) vanishes

for all 0 �= |m| ≤ M0.

2.7. Turing’s method. Turing’s method is a method of verification that the list
of eigenvalues of Maass cusp forms is consecutive, once we have a suitable bound for
the error term S(t) in “average” Weyl’s law N(t) = M(t)+S(t). Roughly speaking,
the method is the following. Assume that the error term S(t) in the “average”
Weyl’s law for the corresponding surface satisfies a bound of the type

El(T ) ≤ 〈S(T )〉 := 1

T

T∫
0

S(t)dt ≤ Eu(T ),

where El(T ) → 0 and Eu(T ) → 0, as T → ∞. Then, we have the following test of
consecutiveness [6, 34].

Step 1. Compute Nnum(T ); the number of numerically found eigenvalues in the
interval 1/4 < λ ≤ T 2 + 1/4 and denote by

Snum(T ) := Nnum(T )−M(T )

the difference between the number of numerically found eigenvalues and the average
Weyl’s law.

Step 2. Add a “fake” eigenvalue λfake near the end of the list of eigenvalues
and compute 〈Snum(T )〉. If the value 〈Snum(T )〉 exceeds Eu(T ), then the list of
eigenvalues is consecutive in the interval 1/4 < λ ≤ λfake.

3. Average Weyl’s law for Γ0(N)+

In this section we prove Theorem 1.
Let us recall that N = p1 · · · pr is a square-free positive integer, and define the

function

αN (j, T ) := T log pj − �T log pj
π

	π,

where, as previously stated, �x	 denotes the greatest integer less than or equal to

x. Let XN = Γ0(N)+\H be the Riemann surface associated to the Fuchsian group
Γ0(N)+, and let ZXN

denote the Selberg zeta function associated to XN .
Let A ∈ (1, 3/2) and T > 1 be arbitrary real numbers, and let R(A) be the

rectangle with vertices 1 − A − iT , A − iT , A + iT , 1 − A + iT . Without loss
of generality, we assume that A and T are such that ZXN

(s) �= 0 for s ∈ ∂R(A).
Formula (5.3) on p. 498 of [17] states the location of zeros and poles of the Selberg
zeta function ZXN

. In the notation of [17], one sees that m = 0 and W = id.
Furthermore, ϕN (1/2) = −1, hence, application of Theorem 4.1 on p. 482 and
formula (4.6) on p. 485 of [17] yields that, in the notation of formula (5.3), one has
A+B −K0 − C = 2g − 2. Therefore,

1

2πi

∫
∂R(A)

Z ′
XN

ZXN

(s)ds = 2NN [0 < rn ≤ T ] + 2QN [0 < Im(ρ) ≤ T ]

+ 2g − 2 + nN + 2m1/4,N ,

where QN [0 < Im(ρ) ≤ T ] denotes the number of zeros ρ of the scattering determi-
nant ϕN with Im(ρ) ∈ (0, T ].
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Let ∂P (A) denote the polygonal path joining points 1/2 − iT , A − iT , A + iT

and 1/2 + iT . Using the functional equation for the function DN (s) :=
Z′

XN

ZXN
(s), as

in the proof of Theorem 2.28 on pp. 466–467 of [17], we can write

NN (T ) +QN [0 < Im(ρ) ≤ T ] = 1− g − nN

2
−m1/4,N +R1(T )(9)

+
1

4πi

∫
∂P (A)

ϕ′
N

ϕN
(s)ds− 1

4πi

∫
∂P (A)

CN (s)ds,

where

R1(T ) :=
1

2πi

∫
∂P (A)

DN (s)ds

and

CN (s) = Vol(XN )(s− 1/2) tan(π(s− 1/2))(10)

−
l∑

i=1

mi−1∑
j=1

π

mi sin(πj/mi)

cosπ(2j/mi − 1)(s− 1/2)

cosπ(s− 1/2)

+ 2 log 2 +
Γ′

Γ
(1/2 + s) +

Γ′

Γ
(3/2− s).

By Theorem 2.29 on p. 468 of [17], we have the estimates

R1(T ) = O

(
T

log T

)
and

T∫
0

R1(t)dt = O

(
T

log2 T

)
as T → ∞.(11)

To see that our function R1(T ) is equal to the function S(T ) in Theorem 2.29 of
[17], we refer to Definition 2.27 on page 465 of [17]. In addition, one can easily prove
that S1(T ), in the notation of [17], coincides with the integral of R1(T ). To do so,
one simply integrates the formula for R1(T ), interchanges the order of integration,
evaluates the inside integral, and then integrates by parts. We choose to omit the
details of these elementary calculations.

Since A ∈ (1, 3/2), the function CN (s) has no poles on the sides of the rectangle
R1/2(A) which has vertices at the points 1/2 − iT , A − iT , A + iT and 1/2 + iT .
Furthermore, the only pole of CN (s) inside R1/2(A) is a simple pole at s = 1. Since

lim
s→1

s− 1

cosπ(s− 1/2)
= − 1

π

we conclude that

Ress=1 CN (s) = −Vol(XN )

2π
+

l∑
i=1

mi−1∑
j=1

cosπ(j/mi − 1/2)

mi sin(πj/mi)

= −Vol(XN )

2π
+

l∑
i=1

(
1− 1

mi

)
= 1− 2g.
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Therefore, by the calculus of residues, having in mind that CN (1/2+it) = CN (1/2−
it), for real and non-negative t we get

1

4πi

∫
∂P (A)

CN (s)ds =
1

2
(1− 2g) +

1

2π

T∫
0

CN (1/2 + it)dt.(12)

By substituting s = 1/2 + it into (10), we then have that

T∫
0

CN (1/2 + it)dt = −Vol(XN )

T∫
0

t tanh(πt)dt

(13)

−
l∑

i=1

π

mi

mi−1∑
j=1

1

sin(πj/mi)

T∫
0

cosh π(2j/mi − 1)t

cosh πt
dt

+ 2Re

⎛
⎝ T∫

0

Γ′

Γ
(1 + it)dt

⎞
⎠+ 2T log 2 = I1(T )− I2(T ) + I3(T ) + 2T log 2,

where, in obvious notation, I1, I2 and I3 are defined to be the integrals in (13). We
will now estimate each of these integrals.

We write t tanh(πt) = t− 2t/(1 + exp(2πt)) to get the expression

I1(T ) = −Vol(XN )

⎛
⎝T 2

2
− 2

∞∫
0

tdt

1 + e2πt
+ 2g1(T )

⎞
⎠ ,

where

g1(T ) =

∞∫
T

tdt

1 + e2πt
.(14)

Quoting formula 3.411.3 from [16] with ν = 2 and μ = 2π, having in mind that
ζ(2) = π2/6 and Γ(2) = 1, we get

I1(T ) = −Vol(XN )

(
T 2

2
− 1

24
+ 2g1(T )

)
.(15)

Similarly, by quoting formula 3.511.4 from [16] with a = π(2j/mi−1) and b = π,
we arrive at the equation

T∫
0

coshπ(2j/mi − 1)t

coshπt
dt =

1

2 sin(πj/mi)
− g2(i, j, T )

where

g2(i, j, T ) :=

∞∫
T

cosh π(2j/mi − 1)t

coshπt
dt.
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Hence,

I2(T ) =
l∑

i=1

π

mi

mi−1∑
j=1

1

2 sin2(πj/mi)
− g2(T ),(16)

where we define

g2(T ) :=

l∑
i=1

π

mi

mi−1∑
j=1

g2(i, j, T )

sin(πj/mi)
.

Finally, quoting formula 8.344 from [16], which is essentially Stirling’s formula,
with z = 1 + iT and n = 2 we get that

1

2
I3(T ) = Re

⎛
⎝−i

T∫
0

(log Γ(1 + it))′dt

⎞
⎠ = Im(log Γ(1 + iT ))(17)

= −T + T log T +
π

4
+ g3(T ),

where

g3(T ) =
1

2
Im

(
log

(
1 +

1

iT

))
+Re

(
T log

(
1 +

1

iT

))
− B2T

2(1 + T 2)
+ Im(R3(T ))

(18)

and

|R3(T )| ≤
|B4|

12(1 + T 2)3/2 cos3( 12 arg(1 + iT ))
≤ |B4|

12
√
2T cos3(π/4)

=
1

180T
,(19)

for T ≥ 1. In the above computations, B2 = 1/6 and B4 = −1/30 are Bernoulli
numbers.

Substituting (15), (16) and (17) into (13), and in turn using (12), we get the
expression

1

4πi

∫
∂P (A)

CN (s)ds =
1

2
(1− 2g)− Vol(XN )

2π

(
T 2

2
− 1

24

)
(20)

−
l∑

i=1

1

4mi

mi−1∑
j=1

1

sin2(πj/mi)
+

1

π

(
T log T − T +

π

4

)

+
log 2

π
T − Vol(XN )

π
g1(T ) +

1

2π
g2(T ) +

1

π
g3(T ).

Using the evaluation (2) of the scattering determinant, we immediately deduce
that, inside the rectangle R1/2(A) the function ϕN (s) has a simple pole at s = 1
and zeros at points ρ. Therefore,

1

4πi

∫
∂P (A)

ϕ′
N

ϕN
(s)ds = QN [0 < Im(ρ) ≤ T ]− 1

2
+

1

4π

T∫
−T

ϕ′
N

ϕN
(1/2 + it)dt.(21)
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Combining (21) with (20) and (9) yields, for T ≥ 1,

NN [0 < rn ≤ T ] = R1(T ) +
1

4π

T∫
−T

ϕ′
N

ϕN
(1/2 + it)dt(22)

+
Vol(XN )

4π
T 2 − T log T

π
+

T

π
(1− log 2)

+
l∑

i=1

1

4mi

mi−1∑
j=1

1

sin2(πj/mi)
− Vol(XN )

48π
− 1

4
− nN

2
−m1/4,N

+

(
Vol(XN )

π
g1(T )−

1

2π
g2(T )−

1

π
g3(T )

)
.

Taking logarithmic derivative of (2), we get

1

4π

T∫
−T

ϕ′
N

ϕN
(1/2 + it)dt =

1

2π

T∫
0

dt

(1/4) + t2
− 1

π
Re

⎛
⎝−i

T∫
0

(log ξ(1 + 2it))′dt

⎞
⎠

(23)

+
1

4π

T∫
−T

D′
N

DN
(1/2 + it)dt.

We will now compute the three integrals on the right-hand side of (23) separately.
First,

1

2π

T∫
0

dt

(1/4) + t2
=

1

2
− 1

π
arctan(1/T ).(24)

As for the second term on the right-hand side of (23), we begin by writing

− 1

π
Re

⎛
⎝−i

T∫
0

(log ξ(1 + 2it))′dt

⎞
⎠ = − 1

π
Im(log ξ(1 + 2iT )− log ξ(1)).

From the definition of the function ξ, one has ξ(1) = ξ(0) = 1/2, so then

− 1

π
Re

⎛
⎝−i

T∫
0

(log ξ(1 + 2it))′dt

⎞
⎠ = − 1

π
Im(log ξ(1 + 2iT )− log ξ(1))(25)

= −1− T log T

π
+

T

π
(1 + log π)− 1

π
g4(T )−

1

π
R2(T ),

where R2(T ) = Im(log ζ(1+2iT )) = Im(log(2iT ζ(1+2iT )))−π/2. From Stirling’s
formula, we have that

g4(T ) = Im

(
log

(
1 +

1

2iT

))
+Re

(
T log

(
1 +

1

2iT

))
(26)

− 2B2T

(1 + 4T 2)
+ Im(R4(T )).
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The error term R4(T ) satisfies the inequality

|R4(T )| ≤
|B4|

12(1/4 + T 2)3/2 cos3( 12 arg(1/2 + iT ))
≤ 2

225T
,(27)

for all T ≥ 1, which we have deduced in a manner similar to (19).
As for the third integral in (23), we begin by noting that the logarithmic deriv-

ative of the function DN is given by

D′
N

DN
(s) = − logN −

r∑
j=1

(pj − 1) log pj · psj
(psj + pj)(psj + 1)

.(28)

Furthermore, straightforward computations yield the formula

1

2π

T∫
0

Re

[
(pj − 1)p

1/2+it
j

(p
1/2+it
j + pj)(p

1/2+it
j + 1)

]
dt(29)

=
pj − 1

2π

1

log pj(pj + 1)

T log pj∫
0

du

1 + aj cosu
,

where

aj = 2/(
√
pj + 1/

√
pj) = 1/ cosh((1/2) log(pj)).

With these preliminary computations, the third term on the right-hand side of (23)
can be evaluated using (28) and (29), namely we have the formula

1

4π

T∫
−T

D′
N

DN
(1/2 + it)dt = − logN

2π
T − 1

2π

r∑
j=1

pj − 1

pj + 1

T log pj∫
0

du

1 + aj cosu
.(30)

We write

T log pj∫
0

du

1 + aj cosu
=


T log pj
π �−1∑
k=0

π∫
0

du

1 + aj cosu
(31)

+

T log pj−
T log pj
π �π∫

0

du

1 + (−1)

T log pj

π �aj cosu

and use [16], formulas 3.613.1 with n = 0, a = aj and 2.553.3 with a = 1, b =

(−1)

T log pj

π �aj (hence b2 < a2) to evaluate the two integrals in (31). Substituting

(31) into (30), and employing the definition αN (j, T ) := T log pj − �T log pj

π 	π, we
get the expression

1

4π

T∫
−T

D′
N

DN
(1/2 + it)dt = − logN

π
T +

1

2π

r∑
j=1

αN (j, T )

− 1

π

r∑
j=1

arctan

⎛
⎜⎝(√

pj − 1
√
pj + 1

)(−1)�
T log pj

π
�

tan

(
αN (j, T )

2

)⎞⎟⎠ .
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Now, by combining this last formula with (23), (24) and (25), we arrive at the
expression

1

4π

T∫
−T

ϕ′
N

ϕN
(1/2 + it)dt = −1

2
− T log T

π
+

T

π
(1 + log(π/N))(32)

− 1

π
R2(T ) +

1

2π

r∑
j=1

αN (j, T )

− 1

π

r∑
j=1

arctan

⎛
⎜⎝
(√

pj − 1
√
pj + 1

)(−1)�
T log pj

π
�

tan

(
αN (j, T )

2

)⎞⎟⎠
− 1

π
(arctan(1/T ) + g4(T )) .

Substituting (32) into (22), we immediately see that

NN [0 < rn ≤ T ]−MN (T ) = SN (T ),

where

MN (T ) =
Vol(XN )

4π
T 2 − 2T log T

π
+

T

π
(2 + log(π/2N))

+

l∑
i=1

1

4mi

mi−1∑
j=1

1

sin2(πj/mi)
− Vol(XN )

48π
−m1/4,N

− 3

4
− nN

2
+

1

2π

r∑
j=1

αN (j, T )

− 1

π

r∑
j=1

arctan

⎛
⎜⎝(√

pj − 1
√
pj + 1

)(−1)�
T log pj

π
�

tan

(
αN (j, T )

2

)⎞⎟⎠+GN (T ),

with

GN (T ) = − 1

2π
(−2Vol(XN )g1(T ) + g2(T ) + 2g3(T ) + 2g4(T ) + 2 arctan(1/T ))

and

SN (T ) = R1(T )−
1

π
(Im(log(2iT ζ(1 + 2iT )))− π/2).(33)

At this time, it remains to derive bounds for the error terms GN (T ) and SN (T ).
From the definition (14) of the function g1(T ) we deduce that

|g1(T )| ≤
∞∫
T

te−2πtdt =
e−2πT

2π
(T +

1

2π
).

For an arbitrary positive constant A > 0, the function f(x) = x2 exp(A − Ax) is
decreasing for x > 2/A; hence, if A > 2, then f(x) ≤ f(1) = 1 for all x ≥ 1.
Therefore, for A > 2, one gets exp(−Ax) ≤ exp(−A)x−2 for all x ≥ 1. Taking
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A = 2π > 2, we obtain the bound

|g1(T )| ≤
e−2πT

2π
(T +

1

2π
) ≤ 2π + 1

4π2 exp(2π)
· 1
T
,(34)

for all T ≥ 1. Since u exp(1− u) ≤ 1 for all u > 0, we get the inequalities

|g2(i, j, T )| ≤
2

π

∞∫
πT

exp((|(2j/mi)− 1| − 1)u)du =
2

π

exp((|(2j/mi)− 1| − 1) πT )

(1− |(2j/mi)− 1|)

≤ 2

(1− |(2j/mi)− 1|)2 π2e
· 1
T
.

For j ∈ {1, . . . ,mi − 1} one has 1− |(2j/mi)− 1| ≥ 2/mi, hence

|g2(T )| ≤
l∑

i=1

1

mi

mi−1∑
j=1

2

e · sin(πj/mi) (1− |(2j/mi)− 1|)2 πT
(35)

≤
l∑

i=1

mi

2eπ

mi−1∑
j=1

1

sin(πj/mi)
· 1
T
,

for all T > 1.
In order to obtain bounds for g3 and g4, we need to estimate Im

(
log

(
1 + a

iT

))
and Re

(
T log

(
1 + a

iT

))
for a = 1 and a = 1/2. When T > 1 one has |a/iT | < 1,

so then

log
(
1 +

a

iT

)
=

∞∑
k=1

(−1)k−1

k

( a

iT

)k

.

Therefore, ∣∣∣Im(
log

(
1 +

a

iT

))∣∣∣ =
∣∣∣∣∣
∞∑
k=1

(−1)k

2k − 1

( a

T

)2k−1
∣∣∣∣∣ ≤ a

T
.

Similarly, ∣∣∣Re(T log
(
1 +

a

iT

))∣∣∣ =
∣∣∣∣∣T

∞∑
k=1

(−1)k−1

2k

( a

T

)2k
∣∣∣∣∣ ≤ a2

2T
.

Now, from (18), (19), (26) and (27) we conclude that for T > 1,

|g3(T )| ≤
1

2T
+

1

2T
+

1

12T
+

1

180T
=

49

45T
(36)

and

|g4(T )| ≤
1

2T
+

1

8T
+

1

12T
+

2

225T
=

1291

1800T
.(37)

Finally, for T ≥ 1 one has arctan(1/T ) ≤ 1/T , hence substituting (34), (35),
(36) and (37) into the definition of GN (T ), we arrive at

|GN (T )| ≤ 1

2πT

⎛
⎝Vol(XN )(2π + 1)

2π2 exp(2π)
+

l∑
i=1

mi

2eπ

mi−1∑
j=1

1

sin(πj/mi)
+

5051

900

⎞
⎠ ,

which is the inequality stated in (1).
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By (11), the proof of the theorem will be complete once we show that

T∫
0

(Im(log(2itζ(1 + 2it)))− π/2)dt = O

(
T

log2 T

)
as T → ∞.

In fact, we will prove the stronger bound

T∫
0

(Im(log(2itζ(1 + 2it)))− π/2)dt = O(log T ) as T → ∞.(38)

By the changes of variables s = 1 + 2it, we can write

T∫
0

log(2itζ(1 + 2it))dt =
1

2i

1+2iT∫
1

log((s− 1)ζ(s))ds.

The function log((s − 1)ζ(s)) is holomorphic in the closed rectangle with vertices
1, A, A+ 2iT and 1 + 2iT , so, by Cauchy’s theorem, we have that

(39)
T∫

0

log(2itζ(1+2it))dt =
1

2i

A∫
1

log((σ−1)ζ(σ))dσ+

T∫
0

log((A−1+2it)ζ(A+2it))dt

+
1

2i

1∫
A

log((σ + 2iT − 1)ζ(σ + 2iT ))dσ = O(1) + J1(T ) + J2(T ) as T → ∞.

It remains to estimate Im(J1(T )) and Im(J2(T )). Trivially, one has

Im(J1(T )) = Im

⎛
⎝ T∫

0

log

(
2it

(
1 +

A− 1

2it

))⎞⎠+ Im

⎛
⎝ T∫

0

log ζ(A+ 2it)

⎞
⎠ .

It is elementary to show that Im
(
log

(
2it

(
1 + A−1

2it

)))
= π/2 + O(t−2) for t � 1.

The Dirichlet series representation of log ζ(A + 2it), is absolutely and uniformly
convergent in the range under consideration since A > 1. Therefore, we get the
bounds

Im(J1(T )) =
π

2
T +O(1) +

∞∑
n=1

Λ(n)

nA log2 n
Im

(
1− n−2iT

2i

)
(40)

=
π

2
T +O(1) as T → ∞,

where Λ(n) is the von Mangoldt function. Combining (40) with (39), we have that

T∫
0

(Im(log(2itζ(1 + 2it)))− π/2)dt = Im(J2(T )) + O(1) as T → ∞.

In order to prove (38), we need to show that Im(J2(T )) = O(log T ) as T → ∞.
The proof of this bound is straightforward. Simply combine the elementary bound
log(σ + 2iT − 1) = O(log T ) together with the estimate log ζ(σ + 2iT ) = O(logT )
which holds uniformly for σ ∈ [1, A], which we quote from Theorem 3.5 in [33].

With all of this, the proof of Theorem 1 is complete.
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Remark 13. In order to prove Corollary 2, one follows the analysis above up to
equation (33). At that point, one uses the first part of Theorem 2.29 on page 468
of [17] to bound the first term and Theorem 3.5 in [33] to bound the second term.

We now state three special cases of Theorem 1; first when Γ = PSL(2,Z), next
when Γ = Γ0(5)

+, and finally when Γ = Γ0(6)
+.

Corollary 14 (Average Weyl’s law for PSL(2,Z)).

N1[0 < rn ≤ T ]−M1(T ) = S1(T ),

where

M1(T ) =
1

12
T 2 − 2T log T

π
+

T

π
(2 + log(π/2))− 131

144
+G1(T ),

with

|G1(T )| ≤
1

2π

(
2π + 1 + 6(1 + 2

√
3) exp(2π − 1)

6π exp(2π)
+

5051

900

)
1

T
<

1

T

and
T∫
0

S1(t)dt = O

(
T

log2 T

)
, as T → ∞.

Proof. We apply Theorem 1 with N = 1. In this case, D1(s) ≡ 1 and the signature
of the group is (0; 2, 3; 1). Furthermore, λ1 > 1/4, by Theorem 11.4 from [21], hence
n1 = 1 and m1/4,N = 0. �

Remark 15. We have been informed that in [8], the authors prove an average Weyl’s
law for SL(2,Z) together with effective bounds for the integral of S1, using a trace
formula approach.

Corollary 16 (Average Weyl’s law for Γ0(5)
+). Let α5(T ) = T log 5−

⌊
T log 5

π

⌋
π.

Then,

N5[0 < rn ≤ T ]−M5(T ) = S5(T ),

where

M5(T ) =
T 2

4
− 2T log T

π
+

T

π
(2 + log

( π

10

)
)− 43

48
+

α5(T )

2π

− 1

π
arctan

⎛
⎜⎝
(√

5− 1√
5 + 1

)(−1)�
T log 5

π
�

tan

(
α5(T )

2

)⎞⎟⎠+G5(T ),

with

|G5(T )| ≤
1

2π

(
2π + 1 + 6 exp(2π − 1)

2π exp(2π)
+

5051

900

)
1

T
<

1

T

and
T∫
0

S5(t)dt = O

(
T

log2 T

)
, as T → ∞.
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Proof. We apply Theorem 1 with N = 5. In this case, the signature of the group
is (0; 2, 2, 2; 1). Also, the only eigenvalue ≤ 1/4 is λ0 = 0, by Corollary 11.5 from
[21] and the embedding of Maass forms on Γ0(5)

+ into Γ0(5). �

Corollary 17 (Average Weyl’s law for Γ0(6)
+). Let α6(T ) = T log 6−

⌊
T log 2

π

⌋
π−⌊

T log 3
π

⌋
π. Then,

N6[0 < rn ≤ T ]−M6(T ) = S6(T ),

where

M6(T ) =
T 2

4
− 2T log T

π
+

T

π
(2 + log

( π

12

)
)− 43

48
+

α6(T )

2π
+G6(T )

− 1

π
arctan

⎛
⎜⎝
(√

2− 1√
2 + 1

)(−1)�
T log 2

π
�

tan
1

2

(
T log 2−

⌊
T log 2

π

⌋
π

)⎞⎟⎠

− 1

π
arctan

⎛
⎜⎝
(√

3− 1√
3 + 1

)(−1)�
T log 3

π
�

tan
1

2

(
T log 3−

⌊
T log 3

π

⌋
π

)⎞⎟⎠ ,

with

|G6(T )| ≤
1

2π

(
2π + 1 + 6 exp(2π − 1)

2π exp(2π)
+

5051

900

)
1

T
<

1

T

and
T∫
0

S6(t)dt = O

(
T

log2 T

)
, as T → ∞.

Proof. The proof is a straightforward corollary of Theorem 1 and basic properties
of Γ0(6)

+. �

4. Numerical computations

In this section we present numerical results on computations and statistical dis-
tribution of large sets of consecutive eigenvalues of Maass cusp forms on X5 and
X6.

4.1. Computation of a consecutive list of eigenvalues of Maass forms on
X5 and X6. A systematic search [32] for Maass cusp forms on Γ0(5)

+ in the interval
0 < λ < 1252 + 1/4 and on Γ0(6)

+ in the interval 0 < λ < 2302 + 1/4 results in
3557 and 12474 Maass forms, respectively. A few eigenvalues are listed in Table 1.
At some point, the entire list of eigenvalues will be made publicly available. Prior
to that time, the list will be made available to anyone upon request.

We note that the lowest point of the fundamental domain of the surafce X6 has
a larger imaginary part than that for X5. The height y of the lowest point has an
influence on how many terms are to be considered in the Fourier expansion (5).
This is the reason that the computations were much faster on X6 than on X5.

The algorithm for computing eigenvalues is described in detail in [32]. The

main ingredients are the following. First, using a set of trial values λ̃1, . . . , λ̃ν ,
we linearize Hejhal’s system of equations (8) in the eigenvalue λ around each trial
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Table 1. Eigenvalues of the Maass cusp forms on Γ0(5)
+ in the

interval 0 < λ < 1252 +1/4 and on Γ0(6)
+ in the interval 0 < λ <

2302 + 1/4.

n λn for Γ0(5)
+ λn for Γ0(6)

+

1 17.32676 20.93844
2 24.23291 26.24717
3 36.89998 37.71537
4 40.58784 40.01593
5 46.81219 52.39092
...

...
...

3555 15623.315 15649.988
3556 15623.860 15654.937
3557 15625.094 15665.201
...

...
...

12470 52875.046
12471 52876.076
12472 52879.257
12473 52894.324
12474 52899.011

...
...

value λ̃. For each λ̃, we obtain a matrix eigenvalue equation which is then solved
numerically. In this step, the eigenvalues λ of Maass cusp forms are related to the
matrix eigenvalues via perturbation theory. As a result, one obtains a preliminary
list of potential eigenvalues of Maass cusp forms. For each potential eigenvalue,
we solve (8) for 0 �= |m| ≤ M0 and check whether the corresponding non-trivial
solution is indeed a Maass cusp form.

The check is described in Section 2.6. This results in a verified list of Maass cusp
forms. Finally, we need to check and verify that the list of Maass cusp forms is
consecutive. As stated, this check is performed using “average” Weyl’s law and Tur-
ing’s method. If it turns out that eigenvalues are missing, we search for them, using
additional trial values λ̃, until our list of Maass cusp forms becomes consecutive,
as indicated by Turing’s method.

We do not have rigorous Turing bounds, yet. Therefore, we use Turing’s method
heuristically. In light of the data obtained, and presented in various figures in this
section, let us again discuss Turing’s method, this time keeping the figures in mind.

Let Nnum
N (T ) count the number of numerically found eigenvalues in the interval

1/4 < λ ≤ T 2 + 1/4. The difference between the number of numerically found
eigenvalues and the average Weyl’s law

Snum
N (T ) := Nnum

N (T )−MN (T )

is a fluctuating function. Its mean comes close to a non-positive integer whose
absolute value counts the number of solutions which have been overlooked.
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DISTRIBUTION OF EIGENVALUES 3063

−0.05

0.05

0

<
S
6n

u
m
(T

)>

T
200160 220180120100 140

Figure 6. Mean 〈Snum
6 (T )〉, with the eigenvalue λ9367 =

200.03592 + 1/4 removed.
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Figure 7. Mean 〈Snum
6 (T )〉, with the fake “eigenvalue” λ =

2002 + 1/4 inserted.

Figures 2 and 3 show the fluctuations Snum
N (T ). In Figures 4 and 5, the mean

〈Snum
N (T )〉 := 1

T

T∫
0

Snum
N (t)dt

tends to zero for large T which indicates that all solutions have been found numer-
ically.

If a solution would have been overlooked, the graph would deviate from zero quite
significantly. A demonstration is given in Figure 6, where we have intentionally
removed the eigenvalue λ9367 = 200.03592 + 1/4, whereas in Figure 7, we have
intentionally inserted a fake “eigenvalue” at λ = 2002 + 1/4.

If we would have an explicit and efficient upper bound on
T∫
0

SN (t)dt, we could

apply Turing’s method to prove, not just verify, that the numerically found lists of
eigenvalues are consecutive. The proof would be to add a fake “eigenvalue” near the
end of each list of eigenvalues and show that with this extra “eigenvalue” 〈Snum

N (T )〉
would exceed the upper bound, as explained in section 2.7; see also [6, 8, 34]. In
our notation, what is needed is to explicitly evaluate the implied constant in the
average of SN (T ). The algorithm in [14] and [22] does, in fact, provide such a
bound, but the explicit value is somewhat large, hence impractical.

Remark 18. For computing Snum
N (T ) we need to evaluate MN (T ) which includes

the term GN (T ). Actually, we do not know the exact value of GN (T ). According
to the bound (1), we can safely neglect GN (T ) in the evaluation of Snum

N (T ) for T
large.

By Theorem 1, MN (T ) includes terms which depend on αN (j, T ) and on
arctan(. . . ). For evaluating the average 〈Snum

N (T )〉, we need to integrate over these
terms. The sum of the αN (j, T ) and the arctan(. . . ) dependent terms is periodic.
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We perform the integration by expanding the periodic contribution into a Fourier
series, integrate the individual Fourier terms, and then sum up numerically.

4.2. Nearest neighbour spacing statistics. Concerning the statistical proper-
ties of the eigenvalues, we must emphasize that the conjectured properties depend
on the choice of the surface X. Depending on whether the corresponding classical
system of a point particle that moves freely on the surface is integrable or not,
there are some generally accepted conjectures about the nearest neighbour spacing
distributions of the eigenvalues in the limit λ → ∞.

Whenever we examine the distribution of the eigenvalues we consider the values
on the scale of the mean level spacings.

Conjecture 19 ([2]). If the corresponding classical system is integrable, the eigen-
values behave as independent random variables and the distribution of the nearest
neighbour spacings is in the limit λ → ∞ close to a Poisson distribution, i.e., there
is no level repulsion.

Conjecture 20 ([4]). If the corresponding classical system is chaotic, the eigen-
values are distributed as the eigenvalues of hermitian random matrices. The corre-
sponding ensembles depend only on the symmetries of the system:

• For chaotic systems without time-reversal invariance the distribution of the
eigenvalues approaches in the limit λ → ∞ the distribution of the Gauss-
ian Unitary Ensemble (GUE) which is characterised by a quadratic level
repulsion.

• For chaotic systems with time-reversal invariance and integer spin the dis-
tribution of the eigenvalues approaches in the limit λ → ∞ the distribution
of the Gaussian Orthogonal Ensemble (GOE) which is characterised by a
linear level repulsion.

• For chaotic systems with time-reversal invariance and half-integer spin the
distribution of the eigenvalues approaches in the limit λ → ∞ the distribu-
tion of the Gaussian Symplectic Ensemble (GSE) which is characterised by
a quartic level repulsion.

These conjectures are very well confirmed by numerical calculations, but several
exceptions are known.

Exception 21. The harmonic oscillator is classically integrable, but its spectrum
is equidistant.

Exception 22. The geodesic motion on surfaces with constant negative curvature
provides a prime example for classical chaos. In some cases, however, the nearest
neighbour distribution of the eigenvalues of the Laplacian on these surfaces appears
to be Poissonian.
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Figure 8. Nearest neighbour spacing distributions P (s) for the
moonshine groups Γ0(5)

+ (left), and Γ0(6)
+ (right), which come

close to the Poisson distribution PPoisson(s) = e−s.

With our lists of consecutive eigenvalues, we can examine the nearest neighbour
spacings. We unfold the spectrum

un = MN (rn) with λn = r2n + 1/4,

in order to obtain rescaled eigenvalues un with a unit mean density. Then

sn = un+1 − un

defines the sequence of nearest neighbour level spacings which has a mean value
of 1 as n → ∞. For the moonshine groups Γ0(5)

+ and Γ0(6)
+ we find that the

spacing distributions come close to that of a Poisson random process,

PPoisson(s) = e−s;

see Figure 8, as opposed to that of a Gaussian orthogonal ensemble of random
matrix theory,

PGOE(s) �
π

2
se−

π
2 s2 .

The spacing distributions are in accordance with Conjecture 3.
One might wonder whether eigenvalue spacings are correlated. For this we in-

vestigated joint eigenvalue spacing distributions,

P (s, s′)dsds′ = P
(
(sn, sn+1) ∈ [s, s+ ds)× [s′, s′ + ds′)

)
.

For Γ0(5)
+ and Γ0(6)

+, we find that the joint eigenvalue spacing distributions factor
into a product of Poisson distributions,

P (s, s′) = PPoisson(s)PPoisson(s
′);

see Figures 9 and 10. Heuristically, the spacings between rescaled eigenvalues are
uncorrelated, which implies that the eigenvalues are uncorrelated as well.
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for Γ0(5)
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tions PPoisson(s)PPoisson(s

′).
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5. Concluding remarks

5.1. Topological equivalence versus Weyl’s law. The groups Γ0(5)
+ and

Γ0(6)
+, which were the main focus of investigation in our paper, are topologi-

cally equivalent, have different Weyl’s law, yet the two sets of eigenvalues seem to
have the same spacing distributions.

From the tables presented in [12], one can find other examples of such groups. In
the case when the genus g is zero, we have the following examples of topologically
equivalent groups with different “classical” Weyl’s laws and “average” Weyl’s law.

(1) For N ∈ {11, 14, 15}, the signature of the surface Γ0(N)+\H is (0; 2, 2, 2,
2; 1),

(2) For N ∈ {17, 22, 30}, the signature of the surface Γ0(N)+\H is (0; 2, 2, 2, 2,
2; 1),

(3) For N ∈ {23, 33, 42}, the signature of the surface Γ0(N)+\H is (0; 2, 2, 2, 2,
2, 2; 1),

(4) For N ∈ {29, 38}, the signature of the surface Γ0(N)+\H is (0; 2, 2, 2, 2, 2, 2,
2; 1),

(5) For N ∈ {46, 51, 55, 66, 70}, the signature of the surface Γ0(N)+\H is
(0; 2, 2, 2, 2, 2, 2, 2, 2; 1).

There are also examples of the groups with genus g = 1, such as N ∈ {83, 123,
143, 182, 195} each of which has signature (1; 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2; 1) and
whose Weyl’s law asymptotics differ in the T term.

This empirical investigation yields to an interesting question: For a given positive
integer k, is it possible to find k topologically equivalent surfaces arising from
moonshine groups having different Weyl’s laws?

5.2. Weyl asymptotics versus nearest neighbour statistics. Generally speak-
ing, discrete eigenvalues of the Laplacian, or, equivalently, positive imaginary parts
of zeros of the corresponding Selberg zeta function on the critical line, are increasing
sequences of numbers, and the associated Weyl’s law is an approximate counting
function of such sequences. The results in Section 4.2 are related to numerical
computation of the nearest neighbour statistics of eigenvalues of Maass cusp forms
on Γ0(N)+\H, for N = 5 and N = 6. We have seen, empirically, that the nearest
neighbour statistics for the eigenvalues of Maass cusp forms seem to be each equal
even though the Weyl’s laws are different. One may argue that the reason for this
is that the Weyl’s law differs in the T term, while the first two lead terms are the
same in the two cases we considered.

Therefore, a natural question which arises is: To what extent does the near-
est neighbour statistics of an increasing sequence of numbers depend on its aver-
age counting function? The answer to this question is presented in the following
example.

Example 23. Let {xn}n∈N be an increasing sequence of numbers having a mean
density of 1, by which we mean

lim
T→∞

1

T
#{xn ≤ T} = 1.

Let m(t) be an increasing function, defined for t > 0, such that m(0) ≥ 1/2. (In the
Weyl’s law case, m(t) = a0t

2 + a1t log t+ a2t+ a3 + . . ., for some positive number
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a0.) Let us define a sequence of numbers λn by letting λn := m−1(xn − 1
2 ), where

m−1 denotes the inverse function of m. Let N(t) be the counting function

N(t) := #{λn ≤ t},

and let the Weyl asymptotics M(t) be a smooth approximation to N(t) such that

lim
T→∞

1

T

T∫
0

(N(t)−M(t))dt = 0.

The unfolded spectrum {un} is defined by un := m(λn). Trivially, un = m(λn) =
m(m−1(xn − 1

2 )) = xn − 1
2 , for all n ∈ N hence un+1 − un = xn+1 − xn, so

the nearest neighbour statistics of the unfolded spectrum {un} equals the nearest
neighbour statistics of the initial sequence {xn}.

We are free to distribute the sequence of increasing numbers {xn} such that the
nearest neighbour statistics of {xn} coincides with our favorite distribution of non-
negative numbers. We are also free to choose the smooth increasing function m(t),
and hence the Weyl asymptotics arbitrarily. Since {xn} and m(t) can be chosen
independently of each other, we conclude that the nearest neighbour statistics of
the unfolded spectrum {un} is completely independent of the Weyl asymptotics.

Therefore, all the analytic results on the Weyl asymptotics are completely inde-
pendent of the numerical results on the nearest neighbour statistics. Neither carries
any information of the other, regardless of how many expansion terms we include
in the Weyl asymptotics. Analytics and numerics complement each other.
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