Remote Access Mathematics of Computation
Green Open Access

Mathematics of Computation

ISSN 1088-6842(online) ISSN 0025-5718(print)

Request Permissions   Purchase Content 
 
 

 

On the distribution of eigenvalues of Maass forms on certain moonshine groups


Authors: Jay Jorgenson, Lejla Smajlović and Holger Then
Journal: Math. Comp. 83 (2014), 3039-3070
MSC (2010): Primary 11F72, 58C40; Secondary 34L16
DOI: https://doi.org/10.1090/S0025-5718-2014-02823-8
Published electronically: April 3, 2014
MathSciNet review: 3246823
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: In this paper we study, both analytically and numerically, questions involving the distribution of eigenvalues of Maass forms on the moonshine groups $ \Gamma _0(N)^+$, where $ N$ is a positive, square-free integer. After we prove that $ \Gamma _0(N)^+$ has one cusp, we compute the constant term of the associated non-holomorphic Eisenstein series. We then derive an ``average'' Weyl's law for the distribution of eigenvalues of Maass forms, from which we prove the ``classical'' Weyl's law as a special case. The groups corresponding to $ N=5$ and $ N=6$ have the same signature; however, our analysis shows that, asymptotically, there are infinitely more cusp forms for $ \Gamma _0(5)^+$ than for $ \Gamma _0(6)^+$. We view this result as being consistent with the Phillips-Sarnak philosophy since we have shown, unconditionally, the existence of two groups which have different Weyl's laws. In addition, we employ Hejhal's algorithm, together with recently developed refinements from [H. Then, Computing large sets of consecutive Maass forms, in preparation], and numerically determine the first $ 3557$ eigenvalues of $ \Gamma _0(5)^+$ and the first $ 12474$ eigenvalues of $ \Gamma _0(6)^+$. With this information, we empirically verify some conjectured distributional properties of the eigenvalues.


References [Enhancements On Off] (What's this?)

  • [1] A. O. L. Atkin and J. Lehner, Hecke operators on $ \Gamma _{0}(m)$, Math. Ann. 185 (1970), 134-160. MR 0268123 (42 #3022)
  • [2] M. V. Berry and M. Tabor, Closed orbits and the regular bound spectrum, Proc. Roy. Soc. London Ser. A 349 (1976), no. 1656, 101-123. MR 0471721 (57 #11445)
  • [3] E. B. Bogomolny, B. Georgeot, M.-J. Giannoni, and C. Schmit, Chaotic billiards generated by arithmetic groups, Phys. Rev. Lett. 69 (1992), no. 10, 1477-1480. MR 1178884 (93g:81025), https://doi.org/10.1103/PhysRevLett.69.1477
  • [4] Oriol Bohigas, Marie-Joya Giannoni, and Charles Schmit, Spectral fluctuations, random matrix theories and chaotic motion, Stochastic processes in classical and quantum systems (Ascona, 1985), Lecture Notes in Phys., vol. 262, Springer, Berlin, 1986, pp. 118-138. MR 870168 (88b:81037), https://doi.org/10.1007/3540171665_59
  • [5] J. Bolte, G. Steil, and F. Steiner, Arithmetical chaos and violation of universality in energy level statistics, Phys. Rev. Lett. 69 (1992), no. 15, 2188-2191. MR 1184827 (93f:81039), https://doi.org/10.1103/PhysRevLett.69.2188
  • [6] Andrew R. Booker, Turing and the Riemann hypothesis, Notices Amer. Math. Soc. 53 (2006), no. 10, 1208-1211. MR 2263990
  • [7] Andrew R. Booker and Andreas Strömbergsson, Numerical computations with the trace formula and the Selberg eigenvalue conjecture, J. Reine Angew. Math. 607 (2007), 113-161. MR 2338122 (2008g:11089), https://doi.org/10.1515/CRELLE.2007.047
  • [8] A. R. Booker and A. Strömbergsson, Theoretical and practical aspects of Maass form computations, in preparation.
  • [9] Andrew R. Booker, Andreas Strömbergsson, and Akshay Venkatesh, Effective computation of Maass cusp forms, Int. Math. Res. Not., 34. MR 2249995 (2007i:11073), https://doi.org/10.1155/IMRN/2006/71281
  • [10] John Conway, John McKay, and Abdellah Sebbar, On the discrete groups of Moonshine, Proc. Amer. Math. Soc. 132 (2004), no. 8, 2233-2240. MR 2052398 (2005a:11052), https://doi.org/10.1090/S0002-9939-04-07421-0
  • [11] C. J. Cummins and T. Gannon, Modular equations and the genus zero property of moonshine functions, Invent. Math. 129 (1997), no. 3, 413-443. MR 1465329 (98k:11046), https://doi.org/10.1007/s002220050167
  • [12] C. J. Cummins, Congruence subgroups of groups commensurable with $ {\rm PSL}(2,\mathbb{Z})$ of genus 0 and 1, Experiment. Math. 13 (2004), no. 3, 361-382. MR 2103333 (2005i:11058)
  • [13] C. J. Cummins, Fundamental domains for genus-zero and genus-one congruence subgroups, LMS J. Comput. Math. 13 (2010), 222-245. MR 2671533 (2011e:20071), https://doi.org/10.1112/S1461157008000041
  • [14] J. S. Friedman, J. Jorgenson, and J. Kramer, An effective bound for the Huber constant for cofinite Fuchsian groups, Math. Comp. 80 (2011), no. 274, 1163-1196. MR 2772118 (2012d:11121), https://doi.org/10.1090/S0025-5718-2010-02430-5
  • [15] Terry Gannon, Moonshine beyond the Monster, Cambridge Monographs on Mathematical Physics, Cambridge University Press, Cambridge, 2006. The bridge connecting algebra, modular forms and physics. MR 2257727 (2008a:17032)
  • [16] I. S. Gradshteyn and I. M. Ryzhik, Table of integrals, series, and products, 7th ed., Elsevier/Academic Press, Amsterdam, 2007. Translated from the Russian; Translation edited and with a preface by Alan Jeffrey and Daniel Zwillinger; With one CD-ROM (Windows, Macintosh and UNIX). MR 2360010 (2008g:00005)
  • [17] Dennis A. Hejhal, The Selberg trace formula for $ {\rm PSL}(2,\,{\bf R})$. Vol. 2, Lecture Notes in Mathematics, vol. 1001, Springer-Verlag, Berlin, 1983. MR 711197 (86e:11040)
  • [18] Dennis A. Hejhal, On eigenfunctions of the Laplacian for Hecke triangle groups, Emerging applications of number theory (Minneapolis, MN, 1996) IMA Vol. Math. Appl., vol. 109, Springer, New York, 1999, pp. 291-315. MR 1691537 (2000f:11063), https://doi.org/10.1007/978-1-4612-1544-8_11
  • [19] Heinz Helling, Bestimmung der Kommensurabilitätsklasse der Hilbertschen Modulgruppe, Math. Z. 92 (1966), 269-280 (German). MR 0228437 (37 #4017)
  • [20] M. N. Huxley, Scattering matrices for congruence subgroups, Modular forms (Durham, 1983) Ellis Horwood Ser. Math. Appl.: Statist. Oper. Res., Horwood, Chichester, 1984, pp. 141-156. MR 803366 (87e:11072)
  • [21] Henryk Iwaniec, Spectral methods of automorphic forms, 2nd ed., Graduate Studies in Mathematics, vol. 53, American Mathematical Society, Providence, RI, 2002. MR 1942691 (2003k:11085)
  • [22] Jay Jorgenson and Jürg Kramer, On the error term of the prime geodesic theorem, Forum Math. 14 (2002), no. 6, 901-913. MR 1932525 (2003h:11059), https://doi.org/10.1515/form.2002.040
  • [23] J. Jorgenson and L. Smajlović, On the distribution of zeros of the derivative of the Selberg's zeta function associated to finite volume Riemann surfaces, arXiv:1302.5928.
  • [24] Mong-Lung Lang, The signature of $ \Gamma ^+_0(n)$, J. Algebra 241 (2001), no. 1, 146-185. MR 1838848 (2002e:20100), https://doi.org/10.1006/jabr.2001.8756
  • [25] Hans Maass, Über eine neue Art von nichtanalytischen automorphen Funktionen und die Bestimmung Dirichletscher Reihen durch Funktionalgleichungen, Math. Ann. 121 (1949), 141-183 (German). MR 0031519 (11,163c)
  • [26] R. S. Phillips and P. Sarnak, On cusp forms for co-finite subgroups of $ {\rm PSL}(2,{\bf R})$, Invent. Math. 80 (1985), no. 2, 339-364. MR 788414 (86m:11037), https://doi.org/10.1007/BF01388610
  • [27] Peter Sarnak, Spectra of hyperbolic surfaces, Bull. Amer. Math. Soc. (N.S.) 40 (2003), no. 4, 441-478. MR 1997348 (2004f:11107), https://doi.org/10.1090/S0273-0979-03-00991-1
  • [28] Goro Shimura, Introduction to the arithmetic theory of automorphic functions, Publications of the Mathematical Society of Japan, No. 11. Iwanami Shoten, Publishers, Tokyo, 1971. Kanô Memorial Lectures, No. 1. MR 0314766 (47 #3318)
  • [29] Fredrik Strömberg, Maass waveforms on $ (\Gamma _0(N),\chi )$ (computational aspects), Hyperbolic geometry and applications in quantum chaos and cosmology, London Math. Soc. Lecture Note Ser., vol. 397, Cambridge Univ. Press, Cambridge, 2012, pp. 187-228. MR 2895234
  • [30] A. Strömbergsson, A pullback algorithm for general (cofinite) Fuchsian groups, (2000), http://www2.math.uu.se/~astrombe/papers/pullback.ps.
  • [31] Holger Then, Maass cusp forms for large eigenvalues, Math. Comp. 74 (2005), no. 249, 363-381 (electronic). MR 2085897 (2005h:11106), https://doi.org/10.1090/S0025-5718-04-01658-8
  • [32] H. Then, Computing large sets of consecutive Maass forms, in preparation.
  • [33] E. C. Titchmarsh, The theory of the Riemann zeta-function, 2nd ed., The Clarendon Press Oxford University Press, New York, 1986. Edited and with a preface by D. R. Heath-Brown. MR 882550 (88c:11049)
  • [34] A. M. Turing, Some calculations of the Riemann zeta-function, Proc. London Math. Soc. (3) 3 (1953), 99-117. MR 0055785 (14,1126e)

Similar Articles

Retrieve articles in Mathematics of Computation with MSC (2010): 11F72, 58C40, 34L16

Retrieve articles in all journals with MSC (2010): 11F72, 58C40, 34L16


Additional Information

Jay Jorgenson
Affiliation: Department of Mathematics, The City College of New York, Convent Avenue at 138th Street, New York, New York 10031
Email: jjorgenson@mindspring.com

Lejla Smajlović
Affiliation: Department of Mathematics, University of Sarajevo, Zmaja od Bosne 35, 71000 Sarajevo, Bosnia and Herzegovina
Email: lejlas@pmf.unsa.ba

Holger Then
Affiliation: Department of Mathematics, University of Bristol, University Walk, Bristol, BS8 1TW, United Kingdom
Email: holger.then@bristol.ac.uk

DOI: https://doi.org/10.1090/S0025-5718-2014-02823-8
Received by editor(s): September 24, 2012
Received by editor(s) in revised form: March 18, 2013
Published electronically: April 3, 2014
Additional Notes: The first author acknowledges grant support from NSF and PSC-CUNY grants
The second author acknowledges support from EPSRC grant EP/H005188/1.
Article copyright: © Copyright 2014 American Mathematical Society

American Mathematical Society