Remote Access Mathematics of Computation
Green Open Access

Mathematics of Computation

ISSN 1088-6842(online) ISSN 0025-5718(print)

Request Permissions   Purchase Content 
 
 

 

A fast algorithm for the energy space boson Boltzmann collision operator


Authors: Jingwei Hu and Lexing Ying
Journal: Math. Comp. 84 (2015), 271-288
MSC (2010): Primary 35Q20, 82C10, 65D32, 44A35, 65T50
DOI: https://doi.org/10.1090/S0025-5718-2014-02824-X
Published electronically: March 21, 2014
MathSciNet review: 3266960
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: This paper introduces a fast algorithm for the energy space boson Boltzmann collision operator. Compared to the direct $ O(N^3)$ calculation and the previous $ O(N^2\log N)$ method [Markowich and Pareschi, 2005], the new algorithm runs in complexity $ O(N\log ^2N)$, which is optimal up to a logarithmic factor ($ N$ is the number of grid points in energy space). The basic idea is to partition the 3-D summation domain recursively into elementary shapes so that the summation within each shape becomes a special double convolution that can be computed efficiently by the fast Fourier transform. Numerical examples are presented to illustrate the efficiency and accuracy of the proposed algorithm.


References [Enhancements On Off] (What's this?)

  • [1] Leif Arkeryd and Anne Nouri, Bose condensates in interaction with excitations: a kinetic model, Comm. Math. Phys. 310 (2012), no. 3, 765-788. MR 2891873, https://doi.org/10.1007/s00220-012-1415-1
  • [2] A. V. Bobylev and S. Rjasanow, Fast deterministic method of solving the Boltzmann equation for hard spheres, Eur. J. Mech. B Fluids 18 (1999), no. 5, 869-887. MR 1728639 (2001c:76109), https://doi.org/10.1016/S0997-7546(99)00121-1
  • [3] C. Connaughton and Y. Pomeau, Kinetic theory and Bose-Einstein condensation. C. R. Pysique, 5:91-106, 2004.
  • [4] M. Escobedo, S. Mischler, and M. A. Valle, Homogeneous Boltzmann equation in quantum relativistic kinetic theory. J. Differ. Equ., Monograph 4, 2003.
  • [5] Miguel Escobedo, Federica Pezzotti, and Manuel Valle, Analytical approach to relaxation dynamics of condensed Bose gases, Ann. Physics 326 (2011), no. 4, 808-827. MR 2771726 (2012c:82046), https://doi.org/10.1016/j.aop.2010.11.001
  • [6] Irene M. Gamba and Sri Harsha Tharkabhushanam, Spectral-Lagrangian methods for collisional models of non-equilibrium statistical states, J. Comput. Phys. 228 (2009), no. 6, 2012-2036. MR 2500671 (2009m:82068), https://doi.org/10.1016/j.jcp.2008.09.033
  • [7] A. L. Garcia and W. Wagner, Direct simulation Monte Carlo method for the Uehling-Uhlenbeck-Boltzmann equation. Phys. Rev. E, 68:056703, 2003.
  • [8] Jingwei Hu and Lexing Ying, A fast spectral algorithm for the quantum Boltzmann collision operator, Commun. Math. Sci. 10 (2012), no. 3, 989-999. MR 2911206
  • [9] I. Ibragimov and S. Rjasanow, Numerical solution of the Boltzmann equation on the uniform grid, Computing 69 (2002), no. 2, 163-186. MR 1954793 (2004i:82060), https://doi.org/10.1007/s00607-002-1458-9
  • [10] Boris N. Khoromskij, Structured data-sparse approximation to high order tensors arising from the deterministic Boltzmann equation, Math. Comp. 76 (2007), no. 259, 1291-1315. MR 2299775 (2008f:15097), https://doi.org/10.1090/S0025-5718-07-01901-1
  • [11] Robert Lacaze, Pierre Lallemand, Yves Pomeau, and Sergio Rica, Dynamical formation of a Bose-Einstein condensate, Phys. D 152/153 (2001), 779-786. Advances in nonlinear mathematics and science. MR 1837939 (2002c:82070), https://doi.org/10.1016/S0167-2789(01)00211-1
  • [12] E. M. Lifshitz and L. P. Pitaevskiĭ, Course of theoretical physics [``Landau-Lifshits'']. Vol. 9, Pergamon Press, Oxford, 1980. Statistical physics. Part 2. Theory of the condensed state; Translated from the Russian by J. B. Sykes and M. J. Kearsley. MR 586944 (84m:82003a)
  • [13] Xuguang Lu and Xiangdong Zhang, On the Boltzmann equation for 2D Bose-Einstein particles, J. Stat. Phys. 143 (2011), no. 5, 990-1019. MR 2811470 (2012i:82047), https://doi.org/10.1007/s10955-011-0221-z
  • [14] Peter A. Markowich and Lorenzo Pareschi, Fast conservative and entropic numerical methods for the boson Boltzmann equation, Numer. Math. 99 (2005), no. 3, 509-532. MR 2117737 (2006a:82055), https://doi.org/10.1007/s00211-004-0570-5
  • [15] Clément Mouhot and Lorenzo Pareschi, Fast algorithms for computing the Boltzmann collision operator, Math. Comp. 75 (2006), no. 256, 1833-1852 (electronic). MR 2240637 (2007d:65095), https://doi.org/10.1090/S0025-5718-06-01874-6
  • [16] L. W. Nordheim, On the kinetic method in the new statistics and its application in the electron theory of conductivity. Proc. R. Soc. London, Ser. A, 119:689-698, 1928.
  • [17] Lorenzo Pareschi and Benoit Perthame, A Fourier spectral method for homogeneous Boltzmann equations, Proceedings of the Second International Workshop on Nonlinear Kinetic Theories and Mathematical Aspects of Hyperbolic Systems (Sanremo, 1994), 1996, pp. 369-382. MR 1407541 (97j:82133), https://doi.org/10.1080/00411459608220707
  • [18] Lorenzo Pareschi and Giovanni Russo, Numerical solution of the Boltzmann equation. I. Spectrally accurate approximation of the collision operator, SIAM J. Numer. Anal. 37 (2000), no. 4, 1217-1245. MR 1756425 (2001g:65175), https://doi.org/10.1137/S0036142998343300
  • [19] R. K. Pathria, Statistical Mechanics. Butterworth-Heinemann, second edition, 1996.
  • [20] D. V. Semikoz and I. I. Tkachev, Kinetics of Bose condensation. Phys. Rev. Lett., 74:3093-3097, 1995.
  • [21] D. V. Semikoz and I. I. Tkachev, Condensation of bosons in the kinetic regime. Phys. Rev. D, 55:489-502, 1997.
  • [22] Herbert Spohn, Kinetics of the Bose-Einstein condensation, Phys. D 239 (2010), no. 10, 627-634. MR 2601928 (2011i:82038), https://doi.org/10.1016/j.physd.2010.01.018
  • [23] E. A. Uehling and G. E. Uhlenbeck, Transport phenomena in Einstein-Bose and Fermi-Dirac gases. I. Phys. Rev., 43:552-561, 1933.

Similar Articles

Retrieve articles in Mathematics of Computation with MSC (2010): 35Q20, 82C10, 65D32, 44A35, 65T50

Retrieve articles in all journals with MSC (2010): 35Q20, 82C10, 65D32, 44A35, 65T50


Additional Information

Jingwei Hu
Affiliation: Institute for Computational Engineering and Sciences (ICES), The University of Texas at Austin, 1 University Station, C0200, Austin, Texas 78712
Email: hu@ices.utexas.edu

Lexing Ying
Affiliation: Department of Mathematics and Institute for Computational and Mathematical Engineering (ICME), Stanford University, 450 Serra Mall, Bldg 380, Stanford, California 94305
Email: lexing@math.stanford.edu

DOI: https://doi.org/10.1090/S0025-5718-2014-02824-X
Keywords: Quantum Boltzmann equation, energy space boson Boltzmann equation, recursive domain decomposition, double convolution, fast Fourier transform
Received by editor(s): June 2, 2012
Received by editor(s) in revised form: December 12, 2012, and December 27, 2012
Published electronically: March 21, 2014
Additional Notes: The first author was supported by an ICES Postdoctoral Fellowship
The second author was partially supported by NSF under CAREER award DMS-0846501
Article copyright: © Copyright 2014 American Mathematical Society

American Mathematical Society