Remote Access Mathematics of Computation
Green Open Access

Mathematics of Computation

ISSN 1088-6842(online) ISSN 0025-5718(print)

Request Permissions   Purchase Content 
 
 

 

Small-span Hermitian matrices over quadratic integer rings


Author: Gary Greaves
Journal: Math. Comp. 84 (2015), 409-424
MSC (2010): Primary 11C08, 15B36; Secondary 05C22, 05C50, 11C20, 15B33
DOI: https://doi.org/10.1090/S0025-5718-2014-02836-6
Published electronically: May 19, 2014
MathSciNet review: 3266968
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: A totally-real polynomial in $ \mathbb{Z}[x]$ with zeros $ \alpha _1 \leqslant \alpha _2 \leqslant \dots \leqslant \alpha _d$ has span $ \alpha _d - \alpha _1$. Building on the classification of all characteristic polynomials of integer symmetric matrices having small span (span less than $ 4$), we obtain a classification of small-span polynomials that are the characteristic polynomial of a Hermitian matrix over some quadratic integer ring. Taking quadratic integer rings as our base, we obtain as characteristic polynomials some low-degree small-span polynomials that are not the characteristic (or minimal) polynomial of any integer symmetric matrix.


References [Enhancements On Off] (What's this?)

  • [1] P. J. Cameron, J. J. Seidel, and S. V. Tsaranov, Signed graphs, root lattices, and Coxeter groups, J. Algebra 164 (1994), no. 1, 173-209. MR 1268332 (95f:20063), https://doi.org/10.1006/jabr.1994.1059
  • [2] Stefano Capparelli, Alberto Del Fra, and Carlo Sciò, On the span of polynomials with integer coefficients, Math. Comp. 79 (2010), no. 270, 967-981. MR 2600551 (2011b:12001), https://doi.org/10.1090/S0025-5718-09-02292-3
  • [3] A.-L. Cauchy,Sur l'équation à l'aide de laquelle on détermine les inégalités séculaires des mouvements des planètes, In Oeuvres complètes, IIième Série, Gauthier-Villars, 1829.
  • [4] Edward Dobrowolski, A note on integer symmetric matrices and Mahler's measure, Canad. Math. Bull. 51 (2008), no. 1, 57-59. MR 2384738 (2008k:11034), https://doi.org/10.4153/CMB-2008-007-9
  • [5] Dennis R. Estes, Eigenvalues of symmetric integer matrices, J. Number Theory 42 (1992), no. 3, 292-296. MR 1189507 (94c:15009), https://doi.org/10.1016/0022-314X(92)90094-6
  • [6] Dennis R. Estes and Robert M. Guralnick, Minimal polynomials of integral symmetric matrices: Computational linear algebra in algebraic and related problems (Essen, 1992), Linear Algebra Appl. 192 (1993), 83-99. MR 1236737 (94e:15042), https://doi.org/10.1016/0024-3795(93)90237-I
  • [7] S. Fisk,
    A very short proof of Cauchy's interlace theorem for eigenvalues of Hermitian matrices,
    Amer. Math. Monthly, 112(2):118, February 2005.
  • [8] Valérie Flammang, Georges Rhin, and Qiang Wu, The totally real algebraic integers with diameter less than 4, Mosc. J. Comb. Number Theory 1 (2011), no. 1, 17-25. MR 2948323
  • [9] Gary Greaves, Cyclotomic Matrices over Quadratic Integer Rings, PhD thesis, Royal Holloway, University of London, 2012.
  • [10] Gary Greaves, Cyclotomic matrices over real quadratic integer rings, Linear Algebra Appl. 437 (2012), no. 9, 2252-2261. MR 2954487, https://doi.org/10.1016/j.laa.2012.06.003
  • [11] Gary Greaves, Cyclotomic matrices over the Eisenstein and Gaussian integers, J. Algebra 372 (2012), 560-583. MR 2990027, https://doi.org/10.1016/j.jalgebra.2012.09.006
  • [12] B. Hartley and T. O. Hawkes, Rings, modules and linear algebra: A further course in algebra describing the structure of abelian groups and canonical forms of matrices through the study of rings and modules; A reprinting, Chapman & Hall, London, 1980. MR 619212 (82e:00001)
  • [13] Alan J. Hoffman, On limit points of spectral radii of non-negative symmetric integral matrices, Graph theory and applications (Proc. Conf., Western Michigan Univ., Kalamazoo, Mich., 1972; dedicated to the memory of J. W. T. Youngs), Springer, Berlin, 1972, pp. 165-172. Lecture Notes in Math., Vol. 303. MR 0347860 (50 #361)
  • [14] A. J. Hoffman, Eigenvalues of graphs, Studies in graph theory, Part II, Math. Assoc. Amer., Washington, D. C., 1975, pp. 225-245. Studies in Math., Vol. 12. MR 0406870 (53 #10656)
  • [15] Suk-Geun Hwang, Cauchy's interlace theorem for eigenvalues of Hermitian matrices, Amer. Math. Monthly 111 (2004), no. 2, 157-159. MR 2042764, https://doi.org/10.2307/4145217
  • [16] L. Kronecker, Zwei Sätze über Gleichungen mit ganzzahligen Coefficienten, J. Reine Angew. Math., 53:173-175, 1857.
  • [17] Guillaume Hanrot, François Morain, and Emmanuel Thomé (eds.), Algorithmic number theory, Lecture Notes in Computer Science, vol. 6197, Springer, Berlin, 2010. MR 2766433 (2011g:11002)
  • [18] James McKee and Chris Smyth, Integer symmetric matrices having all their eigenvalues in the interval $ [-2,2]$, J. Algebra 317 (2007), no. 1, 260-290. MR 2360149 (2008j:15038), https://doi.org/10.1016/j.jalgebra.2007.05.019
  • [19] Raphael M. Robinson, Intervals containing infinitely many sets of conjugate algebraic integers, Studies in Mathematical Analysis and Related Topics, Stanford Univ. Press, Stanford, Calif., 1962, pp. 305-315. MR 0144892 (26 #2433)
  • [20] Raphael M. Robinson, Algebraic equations with span less than $ 4$, Math. Comp. 18 (1964), 547-559. MR 0169374 (29 #6624)
  • [21] I. Schur, Über die Verteilung der Wurzeln bei gewissen algebraischen Gleichungen mit ganzzahligen Koeffizienten, Math. Z. 1 (1918), no. 4, 377-402 (German). MR 1544303, https://doi.org/10.1007/BF01465096
  • [22] Graeme Taylor, Cyclotomic matrices and graphs over the ring of integers of some imaginary quadratic fields, J. Algebra 331 (2011), 523-545. MR 2774674 (2012b:15058), https://doi.org/10.1016/j.jalgebra.2011.02.009

Similar Articles

Retrieve articles in Mathematics of Computation with MSC (2010): 11C08, 15B36, 05C22, 05C50, 11C20, 15B33

Retrieve articles in all journals with MSC (2010): 11C08, 15B36, 05C22, 05C50, 11C20, 15B33


Additional Information

Gary Greaves
Affiliation: Research Center for Pure and Applied Mathematics, Graduate School of Information Sciences, Tohoku University, Sendai, Japan
Email: grwgrvs@gmail.com

DOI: https://doi.org/10.1090/S0025-5718-2014-02836-6
Received by editor(s): November 19, 2012
Received by editor(s) in revised form: April 18, 2013, and May 2, 2013
Published electronically: May 19, 2014
Article copyright: © Copyright 2014 American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.

American Mathematical Society