Remote Access Mathematics of Computation
Green Open Access

Mathematics of Computation

ISSN 1088-6842(online) ISSN 0025-5718(print)

 
 

 

Determination of all rational preperiodic points for morphisms of PN


Author: Benjamin Hutz
Journal: Math. Comp. 84 (2015), 289-308
MSC (2010): Primary 37P05, 37P15; Secondary 37P45, 37-04
DOI: https://doi.org/10.1090/S0025-5718-2014-02850-0
Published electronically: May 5, 2014
MathSciNet review: 3266961
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: For a morphism $ f:\mathbb{P}^N \to \mathbb{P}^N$, the points whose forward orbit by $ f$ is finite are called preperiodic points for $ f$. This article presents an algorithm to effectively determine all the rational preperiodic points for $ f$ defined over a given number field $ K$. This algorithm is implemented in the open-source software Sage for $ \mathbb{Q}$. Additionally, the notion of a dynatomic zero-cycle is generalized to preperiodic points. Along with examining their basic properties, these generalized dynatomic cycles are shown to be effective.


References [Enhancements On Off] (What's this?)

  • [BDJ$^+$09] Robert L. Benedetto, Benjamin Dickman, Sasha Joseph, Benjamin Krause, Daniel Rubin, and Xinwen Zhou, Computing points of small height for cubic polynomials, Involve 2 (2009), no. 1, 37-64. MR 2501344 (2010m:11081), https://doi.org/10.2140/involve.2009.2.37
  • [Bou92] Thierry Bousch, Sur quelques problèmes de dynamique holomorphe, Ph.D. thesis, L'Université d'Orsay, 1992.
  • [D'A93] John P. D'Angelo, Several complex variables and the geometry of real hypersurfaces, Studies in Advanced Mathematics, CRC Press, Boca Raton, FL, 1993. MR 1224231 (94i:32022)
  • [DFK12] John R. Doyle, Xander Faber, and David Krumm, Computation of preperiodic structures for quadratic polynomials over number fields, arXiv:1111.4963.
  • [Eis04] David Eisenbud, Commutative algebra: With a view toward algebraic geometry, Graduate Texts in Mathematics, vol. 150, Springer-Verlag, New York, 1995. MR 1322960 (97a:13001)
  • [FPS97] E. V. Flynn, Bjorn Poonen, and Edward F. Schaefer, Cycles of quadratic polynomials and rational points on a genus-$ 2$ curve, Duke Math. J. 90 (1997), no. 3, 435-463. MR 1480542 (98j:11048), https://doi.org/10.1215/S0012-7094-97-09011-6
  • [FS10] Claus Fieker and Damien Stehlé, Short bases of lattices over number fields, Algorithmic number theory, Lecture Notes in Comput. Sci., vol. 6197, Springer, Berlin, 2010, pp. 157-173. MR 2721419 (2012d:11247), https://doi.org/10.1007/978-3-642-14518-6_15
  • [HIng] Benjamin Hutz and Patrick Ingram, Numerical evidence for a conjecture of Poonen, Rocky Mountain Journal of Mathematics 43 (2013), no. 1, 193-204.
  • [Hut09a] Benjamin Hutz, Finding rational periodic points on Wehler $ K3$ surfaces, New Zealand J. Math. 39 (2009), 133-141. MR 2772404 (2012b:37223)
  • [Hut09b] Benjamin Hutz, Good reduction of periodic points on projective varieties, Illinois J. Math. 53 (2009), no. 4, 1109-1126. MR 2741181 (2012e:37184)
  • [Hut10a] Benjamin Hutz, Dynatomic cycles for morphisms of projective varieties, New York J. Math. 16 (2010), 125-159. MR 2657371 (2011f:37161)
  • [Hut10b] Benjamin Hutz, Rational periodic points for degree two polynomial morphisms on projective space, Acta Arith. 141 (2010), no. 3, 275-288. MR 2587288 (2011e:37099), https://doi.org/10.4064/aa141-3-3
  • [Hut12] Benjamin Hutz, Effectivity of dynatomic cycles for morphisms of projective varieties using deformation theory, Proc. Amer. Math. Soc. 140 (2012), no. 10, 3507-3514. MR 2929019, https://doi.org/10.1090/S0002-9939-2012-11192-X
  • [Laz77] Daniel Lazard, Algèbre linéaire sur $ K[X_{1},\cdots ,X_{n}]$, et élimination, Bull. Soc. Math. France 105 (1977), no. 2, 165-190 (French). MR 0491702 (58 #10905)
  • [Laz81] Robert Lazarsfeld, Excess intersection of divisors, Compositio Math. 43 (1981), no. 3, 281-296. MR 632430 (83e:14004)
  • [LJL82] A. K. Lenstra, H. W. Lenstra Jr., and L. Lovász, Factoring polynomials with rational coefficients, Math. Ann. 261 (1982), no. 4, 515-534. MR 682664 (84a:12002), https://doi.org/10.1007/BF01457454
  • [Mac94] F. S. Macaulay, The algebraic theory of modular systems, Revised reprint of the 1916 original; With an introduction by Paul Roberts, Cambridge Mathematical Library, Cambridge University Press, Cambridge, 1994. MR 1281612 (95i:13001)
  • [Man08] Michelle Manes, $ \mathbb{Q}$-rational cycles for degree-2 rational maps having an automorphism, Proc. Lond. Math. Soc. (3) 96 (2008), no. 3, 669-696. MR 2407816 (2009a:14029), https://doi.org/10.1112/plms/pdm044
  • [Mer96] Loïc Merel, Bornes pour la torsion des courbes elliptiques sur les corps de nombres, Invent. Math. 124 (1996), no. 1-3, 437-449 (French). MR 1369424 (96i:11057), https://doi.org/10.1007/s002220050059
  • [Mor96] Patrick Morton, On certain algebraic curves related to polynomial maps, Compositio Math. 103 (1996), no. 3, 319-350. MR 1414593 (97m:14030)
  • [Nar12] W. Narkiewicz, On a class of monic binomials, Proceedings of the Steklov Institute of Mathematics, April 2013, Vol. 280, no. 2, Supplement, pp. 65-70. DOI:10.1134/S0081543813030073
  • [MS94] Patrick Morton and Joseph H. Silverman, Rational periodic points of rational functions, Internat. Math. Res. Notices 2 (1994), 97-110. MR 1264933 (95b:11066), https://doi.org/10.1155/S1073792894000127
  • [MS95] Patrick Morton and Joseph H. Silverman, Periodic points, multiplicities, and dynamical units, J. Reine Angew. Math. 461 (1995), 81-122. MR 1324210 (96b:11090), https://doi.org/10.1515/crll.1995.461.81
  • [Nor50] D. G. Northcott, Periodic points on an algebraic variety, Ann. of Math. (2) 51 (1950), 167-177. MR 0034607 (11,615c)
  • [Poo98] Bjorn Poonen, The classification of rational preperiodic points of quadratic polynomials over $ {\bf Q}$: a refined conjecture, Math. Z. 228 (1998), no. 1, 11-29. MR 1617987 (99j:11076), https://doi.org/10.1007/PL00004405
  • [Ser00] Jean-Pierre Serre, Local algebra, Translated from the French by CheeWhye Chin and revised by the author, Springer Monographs in Mathematics, Springer-Verlag, Berlin, 2000. MR 1771925 (2001b:13001)
  • [Sil07] Joseph H. Silverman, The arithmetic of dynamical systems, Graduate Texts in Mathematics, vol. 241, Springer, New York, 2007. MR 2316407 (2008c:11002)
  • [SJ05] William Stein and David Joyner, SAGE: System for algebra and geometry experimentation, Communications in Computer Algebra (SIGSAM Bulletin) (July 2005), http://www.sagemath.org.
  • [Sto08] Michael Stoll, Rational 6-cycles under iteration of quadratic polynomials, LMS J. Comput. Math. 11 (2008), 367-380. MR 2465796 (2010b:11067), https://doi.org/10.1112/S1461157000000644

Similar Articles

Retrieve articles in Mathematics of Computation with MSC (2010): 37P05, 37P15, 37P45, 37-04

Retrieve articles in all journals with MSC (2010): 37P05, 37P15, 37P45, 37-04


Additional Information

Benjamin Hutz
Affiliation: Department of Mathematical Sciences, Florida Institute of Technology, 150 W. University Boulevard, Melbourne, Florida 32901
Email: bhutz@fit.edu

DOI: https://doi.org/10.1090/S0025-5718-2014-02850-0
Keywords: Dynamical systems, rational preperiodic points, uniform boundedness, Poonen's conjecture, algorithm
Received by editor(s): November 8, 2012
Received by editor(s) in revised form: April 18, 2013
Published electronically: May 5, 2014
Article copyright: © Copyright 2014 American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.

American Mathematical Society