Remote Access Mathematics of Computation
Green Open Access

Mathematics of Computation

ISSN 1088-6842(online) ISSN 0025-5718(print)

 
 

 

Numerical approximation schemes for multi-dimensional wave equations in asymmetric spaces


Authors: Vincent Lescarret and Enrique Zuazua
Journal: Math. Comp. 84 (2015), 119-152
MSC (2010): Primary 35A35, 35L05; Secondary 35S15
DOI: https://doi.org/10.1090/S0025-5718-2014-02887-1
Published electronically: September 4, 2014
MathSciNet review: 3266955
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We develop finite difference numerical schemes for a model arising in multi-body structures, previously analyzed by H. Koch and E. Zuazua, constituted by two $ n$-dimensional wave equations coupled with a $ (n-1)$-dimensional one along a flexible interface.

That model, under suitable assumptions on the speed of propagation in each media, is well-posed in asymmetric spaces in which the regularity of solutions differs by one derivative from one medium to the other.

Here we consider a flat interface and analyze this property at a discrete level, for finite difference and mixed finite element methods on regular meshes parallel to the interface. We prove that those methods are well-posed in such asymmetric spaces uniformly with respect to the mesh-size parameters and we prove the convergence of the numerical solutions towards the continuous ones in these spaces.

In other words, these numerical methods that are well-behaved in standard energy spaces, preserve the convergence properties in these asymmetric spaces too.

These results are illustrated by several numerical experiments.


References [Enhancements On Off] (What's this?)

  • [1] C. Castro, Asymptotic analysis and control of a hybrid system composed by two vibrating strings connected by a point mass, ESAIM Control Optim. Calc. Var. 2 (1997), 231-280 (electronic). MR 1456323 (98g:73013), https://doi.org/10.1051/cocv:1997108
  • [2] Carlos Castro and Sorin Micu, Boundary controllability of a linear semi-discrete 1-D wave equation derived from a mixed finite element method, Numer. Math. 102 (2006), no. 3, 413-462. MR 2207268 (2006j:93012), https://doi.org/10.1007/s00211-005-0651-0
  • [3] Carlos Castro, Sorin Micu, and Arnaud Münch, Numerical approximation of the boundary control for the wave equation with mixed finite elements in a square, IMA J. Numer. Anal. 28 (2008), no. 1, 186-214. MR 2387911 (2009j:65239), https://doi.org/10.1093/imanum/drm012
  • [4] Carlos Castro and Enrique Zuazua, Analyse spectrale et contrôle d'un système hybride composé de deux poutres connectées par une masse ponctuelle, C. R. Acad. Sci. Paris Sér. I Math. 322 (1996), no. 4, 351-356 (French, with English and French summaries). MR 1378512 (97i:93017)
  • [5] Carlos Castro and Enrique Zuazua, A hybrid system consisting of two flexible beams connected by a point mass: spectral analysis and well-posedness in asymmetric spaces, Élasticité, viscoélasticité et contrôle optimal (Lyon, 1995), ESAIM Proc., vol. 2, Soc. Math. Appl. Indust., Paris, 1997, pp. 17-54 (electronic). MR 1486069 (99a:35248), https://doi.org/10.1051/proc:1997022
  • [6] Carlos Castro and Enrique Zuazua, Boundary controllability of a hybrid system consisting in two flexible beams connected by a point mass, SIAM J. Control Optim. 36 (1998), no. 5, 1576-1595 (electronic). MR 1626876 (99h:93057), https://doi.org/10.1137/S0363012997316378
  • [7] C. Castro and E. Zuazua, Exact boundary controllability of two Euler-Bernoulli beams connected by a point mass, Math. Comput. Modelling 32 (2000), no. 9, 955-969. Mathematical and computer modelling in engineering sciences. MR 1799611 (2001j:93007), https://doi.org/10.1016/S0895-7177(00)00182-5
  • [8] Sylvain Ervedoza, Observability properties of a semi-discrete 1D wave equation derived from a mixed finite element method on nonuniform meshes, ESAIM Control Optim. Calc. Var. 16 (2010), no. 2, 298-326. MR 2654195 (2011b:93027), https://doi.org/10.1051/cocv:2008071
  • [9] E. H. Gaylord, C. N. Gaylord and J. E. Stallmeyer, Structural Engineering Handbook, McGraw-Hill, (1997).
  • [10] Scott Hansen and Enrique Zuazua, Exact controllability and stabilization of a vibrating string with an interior point mass, SIAM J. Control Optim. 33 (1995), no. 5, 1357-1391. MR 1348113 (96f:93014), https://doi.org/10.1137/S0363012993248347
  • [11] Justin Holmer, Jeremy Marzuola, and Maciej Zworski, Fast soliton scattering by delta impurities, Comm. Math. Phys. 274 (2007), no. 1, 187-216. MR 2318852 (2008k:35445), https://doi.org/10.1007/s00220-007-0261-z
  • [12] E. Bécache, Schémas numériques pour la résolution de l'équation des ondes https://who. rocq.inria.fr/Eliane.Becache/COURS-ONDES/cours.html
  • [13] Herbert Koch and Enrique Zuazua, A hybrid system of PDE's arising in multi-structure interaction: coupling of wave equations in $ n$ and $ n-1$ space dimensions, Recent trends in partial differential equations, Contemp. Math., vol. 409, Amer. Math. Soc., Providence, RI, 2006, pp. 55-77. MR 2243949 (2009d:35212), https://doi.org/10.1090/conm/409/07706
  • [14] J. E. Lagnese, Günter Leugering, and E. J. P. G. Schmidt, Modeling, Analysis and Control of Dynamic Elastic Multi-link Structures, Systems & Control: Foundations & Applications, Birkhäuser Boston Inc., Boston, MA, 1994. MR 1279380 (95d:93003)
  • [15] J. Le Rousseau, M. Leautaud and L. Robiano, Controllability of a parabolic system with a diffusive interface, J. Eur. Math. Soc, to appear.
  • [16] J.-L. Lions, Contrôlabilité Exacte, Perturbations et Stabilisation de Systèmes Distribués. Tome 1, Recherches en Mathématiques Appliquées [Research in Applied Mathematics], vol. 8, Masson, Paris, 1988 (French). Contrôlabilité exacte. [Exact controllability]; With appendices by E. Zuazua, C. Bardos, G. Lebeau and J. Rauch. MR 953547 (90a:49040)
  • [17] Lloyd N. Trefethen, Group velocity in finite difference schemes, SIAM Rev. 24 (1982), no. 2, 113-136. MR 652463 (83b:65141), https://doi.org/10.1137/1024038
  • [18] Louis Roder Tcheugoué Tébou and Enrique Zuazua, Uniform exponential long time decay for the space semi-discretization of a locally damped wave equation via an artificial numerical viscosity, Numer. Math. 95 (2003), no. 3, 563-598. MR 2012934 (2004m:65133), https://doi.org/10.1007/s00211-002-0442-9

Similar Articles

Retrieve articles in Mathematics of Computation with MSC (2010): 35A35, 35L05, 35S15

Retrieve articles in all journals with MSC (2010): 35A35, 35L05, 35S15


Additional Information

Vincent Lescarret
Affiliation: Laboratoire des signaux et systèmes (L2S) Supélec - 3 rue Joliot-Curie, 91192 Gif-sur-Yvette cedex (France)
Email: Vincent.LESCARRET@lss.supelec.fr

Enrique Zuazua
Affiliation: BCAM - Basque Center for Applied Mathematics, Mazarredo, 14 E-48009 Bilbao-Basque Country-Spain, Ikerbasque, Basque Foundation for Science, Alameda Urquijo 36-5, Plaza Bizkaia, 48011, Bilbao-Basque Country-Spain
Email: zuazua@bcamath.org

DOI: https://doi.org/10.1090/S0025-5718-2014-02887-1
Received by editor(s): May 5, 2012
Received by editor(s) in revised form: May 5, 2013
Published electronically: September 4, 2014
Additional Notes: The first author thanks N. Burq for an enlightening discussion on the extension of the present analysis to the Schrödinger case
This work was partially supported by the Grant MTM2011-29306-C02-00 of the MICINN (Spain), project PI2010-04 of the Basque Government, the ERC Advanced Grant FP7-246775 NUMERIWAVES, the ESF Research Networking Program OPTPDE
Article copyright: © Copyright 2014 American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.

American Mathematical Society