Remote Access Mathematics of Computation
Green Open Access

Mathematics of Computation

ISSN 1088-6842(online) ISSN 0025-5718(print)

Request Permissions   Purchase Content 
 
 

 

Analysis of a non-symmetric coupling of Interior Penalty DG and BEM


Authors: Norbert Heuer and Francisco-Javier Sayas
Journal: Math. Comp. 84 (2015), 581-598
MSC (2010): Primary 65N30, 65N38, 65N12, 65N15
DOI: https://doi.org/10.1090/S0025-5718-2014-02918-9
Published electronically: October 30, 2014
MathSciNet review: 3290956
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We analyze a non-symmetric coupling of interior penalty discontinuous Galerkin and boundary element methods in two and three dimensions. Main results are discrete coercivity of the method, and thus unique solvability, and quasi-optimal convergence. The proof of coercivity is based on a localized variant of the variational technique from [F.-J. Sayas, The validity of Johnson-Nédeléc's BEM-FEM coupling on polygonal interfaces, SIAM J. Numer. Anal., 47(5):3451-3463, 2009]. This localization gives rise to terms which are carefully analyzed in fractional order Sobolev spaces, and by using scaling arguments for rigid transformations. Numerical evidence of the proven convergence properties has been published previously.


References [Enhancements On Off] (What's this?)

  • [1] Toufic Abboud, Patrick Joly, Jerónimo Rodríguez, and Isabelle Terrasse, Coupling discontinuous Galerkin methods and retarded potentials for transient wave propagation on unbounded domains, J. Comput. Phys. 230 (2011), no. 15, 5877-5907. MR 2804957 (2012c:65151), https://doi.org/10.1016/j.jcp.2011.03.062
  • [2] Douglas N. Arnold, An interior penalty finite element method with discontinuous elements, SIAM J. Numer. Anal. 19 (1982), no. 4, 742-760. MR 664882 (83f:65173), https://doi.org/10.1137/0719052
  • [3] Douglas N. Arnold, Franco Brezzi, Bernardo Cockburn, and L. Donatella Marini, Unified analysis of discontinuous Galerkin methods for elliptic problems, SIAM J. Numer. Anal. 39 (2001/02), no. 5, 1749-1779. MR 1885715 (2002k:65183), https://doi.org/10.1137/S0036142901384162
  • [4] Susanne C. Brenner, Poincaré-Friedrichs inequalities for piecewise $ H^1$ functions, SIAM J. Numer. Anal. 41 (2003), no. 1, 306-324. MR 1974504 (2004d:65140), https://doi.org/10.1137/S0036142902401311
  • [5] F. Brezzi and C. Johnson, On the coupling of boundary integral and finite element methods, Calcolo 16 (1979), no. 2, 189-201. MR 569615 (81e:65055b), https://doi.org/10.1007/BF02575926
  • [6] Rommel Bustinza, Gabriel N. Gatica, and Francisco-Javier Sayas, On the coupling of local discontinuous Galerkin and boundary element methods for non-linear exterior transmission problems, IMA J. Numer. Anal. 28 (2008), no. 2, 225-244. MR 2401197 (2009c:65295), https://doi.org/10.1093/imanum/drm019
  • [7] Bernardo Cockburn, Johnny Guzmán, and Francisco-Javier Sayas, Coupling of Raviart-Thomas and hybridizable discontinuous Galerkin methods with BEM, SIAM J. Numer. Anal. 50 (2012), no. 5, 2778-2801. MR 3022242, https://doi.org/10.1137/100818339
  • [8] Bernardo Cockburn and Francisco-Javier Sayas, The devising of symmetric couplings of boundary element and discontinuous Galerkin methods, IMA J. Numer. Anal. 32 (2012), no. 3, 765-794. MR 2954729, https://doi.org/10.1093/imanum/drr019
  • [9] M. Costabel, Symmetric methods for the coupling of finite elements and boundary elements (invited contribution), Boundary elements IX, Vol. 1 (Stuttgart, 1987) Comput. Mech., Southampton, 1987, pp. 411-420. MR 965328 (89j:65068)
  • [10] M. Costabel and E. P. Stephan, Coupling of finite elements and boundary elements for inhomogeneous transmission problems in $ {\bf R}^3$, The mathematics of finite elements and applications, VI (Uxbridge, 1987), Academic Press, London, 1988, pp. 289-296. MR 956900
  • [11] Gabriel N. Gatica, Norbert Heuer, and Francisco-Javier Sayas, A direct coupling of local discontinuous Galerkin and boundary element methods, Math. Comp. 79 (2010), no. 271, 1369-1394. MR 2629997 (2011f:65259), https://doi.org/10.1090/S0025-5718-10-02309-4
  • [12] Gabriel N. Gatica and George C. Hsiao, Boundary-Field Equation Methods for a Class of Nonlinear Problems, Pitman Research Notes in Mathematics Series, vol. 331, Longman, Harlow, 1995. MR 1379331 (97k:65269)
  • [13] Gabriel N. Gatica, George C. Hsiao, and Francisco-Javier Sayas, Relaxing the hypotheses of Bielak-MacCamy's BEM-FEM coupling, Numer. Math. 120 (2012), no. 3, 465-487. MR 2890297, https://doi.org/10.1007/s00211-011-0414-z
  • [14] Gabriel N. Gatica and Francisco-Javier Sayas, An a priori error analysis for the coupling of local discontinuous Galerkin and boundary element methods, Math. Comp. 75 (2006), no. 256, 1675-1696 (electronic). MR 2240630 (2007e:65119), https://doi.org/10.1090/S0025-5718-06-01864-3
  • [15] Hou De Han, A new class of variational formulations for the coupling of finite and boundary element methods, J. Comput. Math. 8 (1990), no. 3, 223-232. MR 1299224
  • [16] George C. Hsiao and Wolfgang L. Wendland, Boundary Integral Equations, Applied Mathematical Sciences, vol. 164, Springer-Verlag, Berlin, 2008. MR 2441884 (2009i:45001)
  • [17] Claes Johnson and J.-Claude Nédélec, On the coupling of boundary integral and finite element methods, Math. Comp. 35 (1980), no. 152, 1063-1079. MR 583487 (82c:65072), https://doi.org/10.2307/2006375
  • [18] William McLean, Strongly Elliptic Systems and Boundary Integral Equations, Cambridge University Press, Cambridge, 2000. MR 1742312 (2001a:35051)
  • [19] Salim Meddahi, Francisco-Javier Sayas, and Virginia Selgás, Nonsymmetric coupling of BEM and mixed FEM on polyhedral interfaces, Math. Comp. 80 (2011), no. 273, 43-68. MR 2728971, https://doi.org/10.1090/S0025-5718-2010-02401-9
  • [20] G. Of, G. J. Rodin, O. Steinbach, and M. Taus, Coupling of discontinuous Galerkin finite element and boundary element methods, SIAM J. Sci. Comput., 34-3:A1659-A1677, 2012. MR 2970268
  • [21] Francisco-Javier Sayas, The validity of Johnson-Nédélec's BEM-FEM coupling on polygonal interfaces, SIAM J. Numer. Anal. 47 (2009), no. 5, 3451-3463. MR 2551202 (2010m:65293), https://doi.org/10.1137/08072334X
  • [22] O. Steinbach, A note on the stable one-equation coupling of finite and boundary elements, SIAM J. Numer. Anal. 49 (2011), no. 4, 1521-1531. MR 2831059 (2012m:65442), https://doi.org/10.1137/090762701
  • [23] O. C. Zienkiewicz, D. W. Kelly, and P. Bettess, The coupling of the finite element method and boundary solution procedures, Internat. J. Numer. Methods Engrg. 11 (1977), no. 2, 355-375. MR 0451784 (56 #10066)
  • [24] O. C. Zienkiewicz, D. W. Kelly, and P. Bettess, Marriage à la mode--the best of both worlds (finite elements and boundary integrals), Energy methods in finite element analysis, Wiley, Chichester, 1979, pp. 81-107. MR 537001 (80e:65107)

Similar Articles

Retrieve articles in Mathematics of Computation with MSC (2010): 65N30, 65N38, 65N12, 65N15

Retrieve articles in all journals with MSC (2010): 65N30, 65N38, 65N12, 65N15


Additional Information

Norbert Heuer
Affiliation: Facultad de Matemáticas, Pontificia Universidad Católica de Chile, Avenida Vicuña Mackenna 4860, Santiago, Chile
Email: nheuer@mat.puc.cl

Francisco-Javier Sayas
Affiliation: Department of Mathematical Sciences, University of Delaware, Ewing Hall, Newark, Delaware 19711
Email: fjsayas@udel.edu

DOI: https://doi.org/10.1090/S0025-5718-2014-02918-9
Received by editor(s): November 9, 2011
Received by editor(s) in revised form: January 18, 2013
Published electronically: October 30, 2014
Additional Notes: The first author was partially supported by CONICYT through FONDECYT project 1110324 and Anillo ACT1118 (ANANUM)
The second author was partially supported by NSF grant DMS 1216356
Article copyright: © Copyright 2014 American Mathematical Society

American Mathematical Society