Remote Access Mathematics of Computation
Green Open Access

Mathematics of Computation

ISSN 1088-6842(online) ISSN 0025-5718(print)

 
 

 

Piecewise $ \mathbf{H^1}$ functions and vector fields associated with meshes generated by independent refinements


Authors: Susanne C. Brenner and Li-Yeng Sung
Journal: Math. Comp. 84 (2015), 1017-1036
MSC (2010): Primary 65N30
DOI: https://doi.org/10.1090/S0025-5718-2014-02866-4
Published electronically: August 27, 2014
MathSciNet review: 3315498
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We consider piecewise $ H^1$ functions and vector fields associated with a class of meshes generated by independent refinements and show that they can be effectively analyzed in terms of the number of refinement levels and the shape regularity of the subdomains that appear in the meshes. We derive Poincaré-Friedrichs inequalities and Korn's inequalities for such meshes and discuss an application to a discontinuous finite element method.


References [Enhancements On Off] (What's this?)

  • [1] Thomas Apel, Anna-Margarete Sändig, and John R. Whiteman, Graded mesh refinement and error estimates for finite element solutions of elliptic boundary value problems in non-smooth domains, Math. Methods Appl. Sci. 19 (1996), no. 1, 63-85. MR 1365264 (96h:65144), https://doi.org/10.1002/(SICI)1099-1476(19960110)19:1$ \langle $63::AID-MMA764$ \rangle $3.0.CO;2-S
  • [2] Douglas N. Arnold, Franco Brezzi, Bernardo Cockburn, and L. Donatella Marini, Unified analysis of discontinuous Galerkin methods for elliptic problems, SIAM J. Numer. Anal. 39 (2001/02), no. 5, 1749-1779. MR 1885715 (2002k:65183), https://doi.org/10.1137/S0036142901384162
  • [3] Constantin Băcuţă, Victor Nistor, and Ludmil T. Zikatanov, Improving the rate of convergence of `high order finite elements' on polygons and domains with cusps, Numer. Math. 100 (2005), no. 2, 165-184. MR 2135780 (2006d:65130), https://doi.org/10.1007/s00211-005-0588-3
  • [4] Andrew T. Barker and Susanne C. Brenner, A mixed finite element method for the Stokes equations based on a weakly over-penalized symmetric interior penalty approach, J. Sci. Comput. 58 (2014) no. 2, 290-307. (DOI:10.1016/j.cam.2013.02.028). MR 3150260
  • [5] James H. Bramble and Stephen R. Hilbert, Estimation of linear functionals on Sobolev spaces with application to Fourier transforms and spline interpolation, SIAM J. Numer. Anal. 7 (1970), 112-124. MR 0263214 (41 #7819)
  • [6] Susanne C. Brenner, Poincaré-Friedrichs inequalities for piecewise $ H^1$ functions, SIAM J. Numer. Anal. 41 (2003), no. 1, 306-324. MR 1974504 (2004d:65140), https://doi.org/10.1137/S0036142902401311
  • [7] Susanne C. Brenner, Korn's inequalities for piecewise $ H^1$ vector fields, Math. Comp. 73 (2004), no. 247, 1067-1087. MR 2047078 (2005c:65096), https://doi.org/10.1090/S0025-5718-03-01579-5
  • [8] Susanne C. Brenner, Thirupathi Gudi, Luke Owens, and Li-Yeng Sung, An intrinsically parallel finite element method, J. Sci. Comput. 42 (2010), no. 1, 118-121. MR 2576367 (2010m:65267), https://doi.org/10.1007/s10915-009-9318-9
  • [9] Susanne C. Brenner, Thirupathi Gudi, and Li-Yeng Sung, A posteriori error control for a weakly over-penalized symmetric interior penalty method, J. Sci. Comput. 40 (2009), no. 1-3, 37-50. MR 2511727 (2010e:65191), https://doi.org/10.1007/s10915-009-9278-0
  • [10] Susanne C. Brenner, Luke Owens, and Li-Yeng Sung, A weakly over-penalized symmetric interior penalty method, Electron. Trans. Numer. Anal. 30 (2008), 107-127. MR 2480072 (2009k:65236)
  • [11] Susanne C. Brenner, Luke Owens, and Li-Yeng Sung, Higher order weakly over-penalized symmetric interior penalty methods, J. Comput. Appl. Math. 236 (2012), no. 11, 2883-2894. MR 2891371, https://doi.org/10.1016/j.cam.2012.01.025
  • [12] Susanne C. Brenner and L. Ridgway Scott, The Mathematical Theory of Finite Element Methods, 3rd ed., Texts in Applied Mathematics, vol. 15, Springer, New York, 2008. MR 2373954 (2008m:65001)
  • [13] Susanne C. Brenner, Kening Wang, and Jie Zhao, Poincaré-Friedrichs inequalities for piecewise $ H^2$ functions, Numer. Funct. Anal. Optim. 25 (2004), no. 5-6, 463-478. MR 2106270 (2005i:65178), https://doi.org/10.1081/NFA-200042165
  • [14] Annalisa Buffa and Christoph Ortner, Compact embeddings of broken Sobolev spaces and applications, IMA J. Numer. Anal. 29 (2009), no. 4, 827-855. MR 2557047 (2010k:65097), https://doi.org/10.1093/imanum/drn038
  • [15] Philippe G. Ciarlet, The Finite Element Method for Elliptic Problems, North-Holland Publishing Co., Amsterdam, 1978. Studies in Mathematics and its Applications, Vol. 4. MR 0520174 (58 #25001)
  • [16] Michel Crouzeix and Pierre-Arnaud Raviart, Conforming and nonconforming finite element methods for solving the stationary Stokes equations. I, Rev. Française Automat. Informat. Recherche Opérationnelle Sér. Rouge 7 (1973), no. R-3, 33-75. MR 0343661 (49 #8401)
  • [17] Monique Dauge, Elliptic Boundary Value Problems on Corner Domains, Lecture Notes in Mathematics, vol. 1341, Springer-Verlag, Berlin, 1988. Smoothness and asymptotics of solutions. MR 961439 (91a:35078)
  • [18] Clint Dawson, Shuyu Sun, and Mary F. Wheeler, Compatible algorithms for coupled flow and transport, Comput. Methods Appl. Mech. Engrg. 193 (2004), no. 23-26, 2565-2580. MR 2055253 (2004m:76120), https://doi.org/10.1016/j.cma.2003.12.059
  • [19] Daniele A. Di Pietro and Alexandre Ern, Discrete functional analysis tools for discontinuous Galerkin methods with application to the incompressible Navier-Stokes equations, Math. Comp. 79 (2010), no. 271, 1303-1330. MR 2629994 (2011e:65264), https://doi.org/10.1090/S0025-5718-10-02333-1
  • [20] Todd Dupont and Ridgway Scott, Polynomial approximation of functions in Sobolev spaces, Math. Comp. 34 (1980), no. 150, 441-463. MR 559195 (81h:65014), https://doi.org/10.2307/2006095
  • [21] Pierre Grisvard, Elliptic Problems in Non Smooth Domains, Pitman, Boston, 1985.
  • [22] Vladimir Kondratiev, Boundary value problems for elliptic equations in domains with conical or angular points, Trans. Moscow Math. Soc., pages 227-313, 1967.
  • [23] Kent-Andre Mardal and Ragnar Winther, An observation on Korn's inequality for nonconforming finite element methods, Math. Comp. 75 (2006), no. 253, 1-6. MR 2176387 (2006d:76083), https://doi.org/10.1090/S0025-5718-05-01783-7
  • [24] Sergey A. Nazarov and Boris A. Plamenevsky, Elliptic Problems in Domains with Piecewise Smooth Boundaries, de Gruyter Expositions in Mathematics, vol. 13, Walter de Gruyter & Co., Berlin, 1994. MR 1283387 (95h:35001)
  • [25] Jindřich Nečas, Les méthodes Directes en Théorie des Équations Elliptiques, Masson et Cie, Éditeurs, Paris, 1967 (French). MR 0227584 (37 #3168)
  • [26] Joachim A. Nitsche, On Korn's second inequality, RAIRO Anal. Numér. 15 (1981), no. 3, 237-248 (English, with French summary). MR 631678 (83a:35012)
  • [27] Luke Owens, Multigrid methods for weakly over-penalized interior penalty methods, PhD thesis, University of South Carolina, 2007.
  • [28] Béatrice Rivière and Vivette Girault, Discontinuous finite element methods for incompressible flows on subdomains with non-matching interfaces, Comput. Methods Appl. Mech. Engrg. 195 (2006), no. 25-28, 3274-3292. MR 2220919 (2007b:65126), https://doi.org/10.1016/j.cma.2005.06.014
  • [29] Béatrice Rivière, Mary F. Wheeler, and Vivette Girault, A priori error estimates for finite element methods based on discontinuous approximation spaces for elliptic problems, SIAM J. Numer. Anal. 39 (2001), no. 3, 902-931. MR 1860450 (2002g:65149), https://doi.org/10.1137/S003614290037174X

Similar Articles

Retrieve articles in Mathematics of Computation with MSC (2010): 65N30

Retrieve articles in all journals with MSC (2010): 65N30


Additional Information

Susanne C. Brenner
Affiliation: Department of Mathematics and Center for Computation and Technology, Louisiana State University, Baton Rouge, Louisiana 70803
Email: brenner@math.lsu.edu

Li-Yeng Sung
Affiliation: Department of Mathematics and Center for Computation and Technology, Louisiana State University, Baton Rouge, Louisiana 70803
Email: sung@math.lsu.edu

DOI: https://doi.org/10.1090/S0025-5718-2014-02866-4
Keywords: Nonconforming meshes, independent refinements, Poincar\'e-Friedrichs inequalities, Korn's inequalities, weakly over-penalized symmetric interior penalty method
Received by editor(s): October 30, 2012
Received by editor(s) in revised form: August 7, 2013
Published electronically: August 27, 2014
Additional Notes: This work was supported in part by the National Science Foundation under Grant No. DMS-10-16332.
Article copyright: © Copyright 2014 American Mathematical Society

American Mathematical Society