Remote Access Mathematics of Computation
Green Open Access

Mathematics of Computation

ISSN 1088-6842(online) ISSN 0025-5718(print)

 
 

 

A posteriori error estimates for discontinuous Galerkin methods for the generalized Korteweg-de Vries equation


Authors: Ohannes Karakashian and Charalambos Makridakis
Journal: Math. Comp. 84 (2015), 1145-1167
MSC (2010): Primary 65M12, 65M60; Secondary 35Q53
DOI: https://doi.org/10.1090/S0025-5718-2014-02878-0
Published electronically: September 10, 2014
MathSciNet review: 3315503
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We construct, analyze and numerically validate a posteriori error estimates for conservative discontinuous Galerkin (DG) schemes for the Generalized Korteweg-de Vries (GKdV) equation. We develop the concept of dispersive reconstruction, i.e., a piecewise polynomial function which satisfies the GKdV equation in the strong sense but with a computable forcing term enabling the use of a priori error estimation techniques to obtain computable upper bounds for the error. Both semidiscrete and fully discrete approximations are treated.


References [Enhancements On Off] (What's this?)

  • [1] Kanji Abe and Osamu Inoue, Fourier expansion solution of the Korteweg-deVries equation, J. Comput. Phys. 34 (1980), no. 2, 202-210. MR 559996 (81a:65113), https://doi.org/10.1016/0021-9991(80)90105-9
  • [2] Robert A. Adams, Sobolev Spaces, Academic Press [A subsidiary of Harcourt Brace Jovanovich, Publishers], New York-London, 1975. Pure and Applied Mathematics, Vol. 65. MR 0450957 (56 #9247)
  • [3] Georgios Akrivis, Charalambos Makridakis, and Ricardo H. Nochetto, A posteriori error estimates for the Crank-Nicolson method for parabolic equations, Math. Comp. 75 (2006), no. 254, 511-531. MR 2196979 (2007a:65114), https://doi.org/10.1090/S0025-5718-05-01800-4
  • [4] M. E. Alexander and J. L. Morris, Galerkin methods applied to some model equations for non-linear dispersive waves, J. Comput. Phys. 30 (1979), no. 3, 428-451. MR 530003 (80c:76006), https://doi.org/10.1016/0021-9991(79)90124-4
  • [5] Garth A. Baker, Vassilios A. Dougalis, and Ohannes A. Karakashian, Convergence of Galerkin approximations for the Korteweg-de Vries equation, Math. Comp. 40 (1983), no. 162, 419-433. MR 689464 (84f:65072), https://doi.org/10.2307/2007524
  • [6] Garth A. Baker, Wadi N. Jureidini, and Ohannes A. Karakashian, Piecewise solenoidal vector fields and the Stokes problem, SIAM J. Numer. Anal. 27 (1990), no. 6, 1466-1485. MR 1080332 (91m:65246), https://doi.org/10.1137/0727085
  • [7] E. Bänsch, F. Karakatsani, and Ch. Makridakis, A posteriori error control for fully discrete Crank-Nicolson schemes, SIAM J. Numer. Anal. 50 (2012), no. 6, 2845-2872. MR 3022245, https://doi.org/10.1137/110839424
  • [8] T. B. Benjamin, J. L. Bona, and J. J. Mahony, Model equations for long waves in nonlinear dispersive systems, Philos. Trans. Roy. Soc. London Ser. A 272 (1972), no. 1220, 47-78. MR 0427868 (55 #898)
  • [9] Jerry Bona, Model equations for waves in nonlinear dispersive systems, Proceedings of the International Congress of Mathematicians (Helsinki, 1978), Acad. Sci. Fennica, Helsinki, 1980, pp. 887-894. MR 562704 (83b:35103)
  • [10] J. Bona.
    On solitary waves and their role in the evolution of long waves,
    in H. Amann, N. Bazley, and K. Kirchgässner, editors, Applications of Nonlinear Analysis in the Physical Sciences, pages 183-205. Pitman: London, 1981.
  • [11] J. L. Bona, H. Chen, O. Karakashian, and Y. Xing, Conservative, discontinuous Galerkin-methods for the generalized Korteweg-de Vries equation, Math. Comp. 82 (2013), no. 283, 1401-1432. MR 3042569, https://doi.org/10.1090/S0025-5718-2013-02661-0
  • [12] Susanne C. Brenner and L. Ridgway Scott, The Mathematical Theory of Finite Element Methods, 2nd ed., Texts in Applied Mathematics, vol. 15, Springer-Verlag, New York, 2002. MR 1894376 (2003a:65103)
  • [13] Yingda Cheng and Chi-Wang Shu, A discontinuous Galerkin finite element method for time dependent partial differential equations with higher order derivatives, Math. Comp. 77 (2008), no. 262, 699-730. MR 2373176 (2008m:65252), https://doi.org/10.1090/S0025-5718-07-02045-5
  • [14] Bernardo Cockburn and Chi-Wang Shu, TVB Runge-Kutta local projection discontinuous Galerkin finite element method for conservation laws. II. General framework, Math. Comp. 52 (1989), no. 186, 411-435. MR 983311 (90k:65160), https://doi.org/10.2307/2008474
  • [15] Vassilios A. Dougalis and Ohannes A. Karakashian, On some high-order accurate fully discrete Galerkin methods for the Korteweg-de Vries equation, Math. Comp. 45 (1985), no. 172, 329-345. MR 804927 (86m:65118), https://doi.org/10.2307/2008128
  • [16] B. Fornberg and G. B. Whitham, A numerical and theoretical study of certain nonlinear wave phenomena, Philos. Trans. Roy. Soc. London Ser. A 289 (1978), no. 1361, 373-404. MR 497916 (80i:35156), https://doi.org/10.1098/rsta.1978.0064
  • [17] Emmanuil H. Georgoulis, Omar Lakkis, and Juha M. Virtanen, A posteriori error control for discontinuous Galerkin methods for parabolic problems, SIAM J. Numer. Anal. 49 (2011), no. 2, 427-458. MR 2784879 (2012d:65205), https://doi.org/10.1137/080722461
  • [18] Ohannes Karakashian and William McKinney, On optimal high-order in time approximations for the Korteweg-de Vries equation, Math. Comp. 55 (1990), no. 192, 473-496. MR 1035935 (92h:65172), https://doi.org/10.2307/2008429
  • [19] Irene Kyza and Charalambos Makridakis, Analysis for time discrete approximations of blow-up solutions of semilinear parabolic equations, SIAM J. Numer. Anal. 49 (2011), no. 1, 405-426. MR 2783232 (2012d:65185), https://doi.org/10.1137/100796819
  • [20] Omar Lakkis and Charalambos Makridakis, Elliptic reconstruction and a posteriori error estimates for fully discrete linear parabolic problems, Math. Comp. 75 (2006), no. 256, 1627-1658. MR 2240628 (2007e:65122), https://doi.org/10.1090/S0025-5718-06-01858-8
  • [21] Omar Lakkis and Tristan Pryer, Gradient recovery in adaptive finite-element methods for parabolic problems, IMA J. Numer. Anal. 32 (2012), no. 1, 246-278. MR 2875251, https://doi.org/10.1093/imanum/drq019
  • [22] Charalambos Makridakis and Ricardo H. Nochetto, Elliptic reconstruction and a posteriori error estimates for parabolic problems, SIAM J. Numer. Anal. 41 (2003), no. 4, 1585-1594. MR 2034895 (2004k:65157), https://doi.org/10.1137/S0036142902406314
  • [23] Charalambos Makridakis and Ricardo H. Nochetto, A posteriori error analysis for higher order dissipative methods for evolution problems, Numer. Math. 104 (2006), no. 4, 489-514. MR 2249675 (2008b:65114), https://doi.org/10.1007/s00211-006-0013-6
  • [24] J.-C. Saut, Applications de l'interpolation non linéaire à des problèmes d'évolution non linéaires, J. Math. Pures Appl. (9) 54 (1975), 27-52 (French). MR 0454374 (56 #12625)
  • [25] Hans Schamel and Klaus Elsässer, The application of the spectral method to nonlinear wave propagation, J. Computational Phys. 22 (1976), no. 4, 501-516. MR 0449164 (56 #7469)
  • [26] Thiab R. Taha and Mark J. Ablowitz, Analytical and numerical aspects of certain nonlinear evolution equations. III. Numerical, Korteweg-de Vries equation, J. Comput. Phys. 55 (1984), no. 2, 231-253. MR 762364 (86e:65128c), https://doi.org/10.1016/0021-9991(84)90004-4
  • [27] T. Taha and M. Ablowitz,
    Analytical and numerical aspects of certain nonlinear evolution equations. IV, Numerical, modified Korteweg-de Vries equation.
    J. Comp. Phys., 77:540-548, 1988.
  • [28] F. Tappert,
    Numerical solution of the Korteweg-de Vries equation and its generalizations by the split-step Fourier method.
    In A. C. Newell, editor, Nonlinear Wave Motion, Lectures in Applied Mathematics, pages 215-216. Amer. Math. Soc., Providence, R.I., 1974.
  • [29] A. C. Vliegenthart, On finite-difference methods for the Korteweg-de Vries equation, J. Engrg. Math. 5 (1971), 137-155. MR 0363153 (50 #15591)
  • [30] Lars B. Wahlbin, A dissipative Galerkin method for the numerical solution of first order hyperbolic equations, Mathematical aspects of finite elements in partial differential equations (Proc. Sympos., Math. Res. Center, Univ. Wisconsin, Madison, Wis., 1974), Math. Res. Center, Univ. of Wisconsin-Madison, Academic Press, New York, 1974, pp. 147-169. Publication No. 33. MR 0658322 (58 #31929)
  • [31] Ragnar Winther, A conservative finite element method for the Korteweg-deVries equation, Math. Comp. 34 (1980), no. 149, 23-43. MR 551289 (81a:65108), https://doi.org/10.2307/2006219
  • [32] Yan Xu and Chi-Wang Shu, Error estimates of the semi-discrete local discontinuous Galerkin method for nonlinear convection-diffusion and KdV equations, Comput. Methods Appl. Mech. Engrg. 196 (2007), no. 37-40, 3805-3822. MR 2340006 (2009e:65139), https://doi.org/10.1016/j.cma.2006.10.043
  • [33] Jue Yan and Chi-Wang Shu, A local discontinuous Galerkin method for KdV type equations, SIAM J. Numer. Anal. 40 (2002), no. 2, 769-791 (electronic). MR 1921677 (2003e:65181), https://doi.org/10.1137/S0036142901390378

Similar Articles

Retrieve articles in Mathematics of Computation with MSC (2010): 65M12, 65M60, 35Q53

Retrieve articles in all journals with MSC (2010): 65M12, 65M60, 35Q53


Additional Information

Ohannes Karakashian
Affiliation: Department of Mathematics, The University of Tennessee, Knoxville, Tennessee 37996
Email: ohannes@math.utk.edu

Charalambos Makridakis
Affiliation: Department of Applied Mathematics, The University of Crete, Heraklion, Greece – and – IACM-FORTH, 70013 Heraklion-Crete, Greece
Address at time of publication: School of Mathematical and Physical Sciences, University of Sussex, Brighton, BN1 9QH, United Kingdom
Email: makr@tem.uoc.gr

DOI: https://doi.org/10.1090/S0025-5718-2014-02878-0
Received by editor(s): February 5, 2013
Received by editor(s) in revised form: August 8, 2013
Published electronically: September 10, 2014
Additional Notes: The work of the first author was partially supported by NSF grants DMS-0811314 and NSF-1216740
The work of the second author was supported by EU program FP7-REGPOT-2009-1, grant 245749 through the Archimedes Center for Modeling, Analysis and Computation (ACMAC) of the Department of Applied Mathematics at the University of Crete and by GSRT grant 1456.
Article copyright: © Copyright 2014 American Mathematical Society

American Mathematical Society