Remote Access Mathematics of Computation
Green Open Access

Mathematics of Computation

ISSN 1088-6842(online) ISSN 0025-5718(print)

 
 

 

Perfect lattices over imaginary quadratic number fields


Authors: Oliver Braun and Renaud Coulangeon
Journal: Math. Comp. 84 (2015), 1451-1467
MSC (2010): Primary 11H55, 11Y99; Secondary 11F06
DOI: https://doi.org/10.1090/S0025-5718-2014-02891-3
Published electronically: November 20, 2014
MathSciNet review: 3315516
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We present an adaptation of Voronoi theory for imaginary quadratic number fields of class number greater than 1. This includes a characterisation of extreme Hermitian forms which is analogous to the classic characterisation of extreme quadratic forms as well as a version of Voronoi's famous algorithm which may be used to enumerate all perfect Hermitian forms for a given imaginary quadratic number field in dimensions 2 and 3. We also present an application of the algorithm which allows us to determine generators of the general linear group of an $ \mathcal {O}_K$-lattice.


References [Enhancements On Off] (What's this?)

  • [1] Avner Ash, Small-dimensional classifying spaces for arithmetic subgroups of general linear groups, Duke Math. J. 51 (1984), no. 2, 459-468. MR 747876 (85k:22027), https://doi.org/10.1215/S0012-7094-84-05123-8
  • [2] Luigi Bianchi, Sui gruppi di sostituzioni lineari con coefficienti appartenenti a corpi quadratici immaginarî, Math. Ann. 40 (1892), no. 3, 332-412 (Italian). MR 1510727, https://doi.org/10.1007/BF01443558
  • [3] Wieb Bosma, John Cannon, and Catherine Playoust, The Magma algebra system. I. The user language, J. Symbolic Comput. 24 (1997), no. 3-4, 235-265. Computational algebra and number theory (London, 1993). MR 1484478, https://doi.org/10.1006/jsco.1996.0125
  • [4] C. Bradford Barber, David P. Dobkin, and Hannu Huhdanpaa, The quickhull algorithm for convex hulls, ACM Trans. Math. Software 22 (1996), no. 4, 469-483. MR 1428265 (97g:65292), https://doi.org/10.1145/235815.235821
  • [5] Renaud Coulangeon, Invariants d'Hermite, théorie de Voronoï et designs sphériques, Habilitation thesis, University of Bordeaux, 2004, available through http://www.math.u-bordeaux1.fr/~rcoulang/synthese.pdf
  • [6] Mathieu Dutour Sikirić, Achill Schürmann, and Frank Vallentin, Classification of eight-dimensional perfect forms, Electron. Res. Announc. Amer. Math. Soc. 13 (2007), 21-32 (electronic). MR 2300003 (2007m:11089), https://doi.org/10.1090/S1079-6762-07-00171-0
  • [7] J. Elstrodt, F. Grunewald, and J. Mennicke, Groups Acting on Hyperbolic Space, Springer Monographs in Mathematics, Springer-Verlag, Berlin, 1998. Harmonic analysis and number theory. MR 1483315 (98g:11058)
  • [8] Dieter Flöge, Zur Struktur der $ {\rm PSL}_{2}$ über einigen imaginär-quadratischen Zahlringen, Math. Z. 183 (1983), no. 2, 255-279 (German). MR 704107 (85c:11043), https://doi.org/10.1007/BF01214824
  • [9] Michael Hentschel, Aloys Krieg, and Gabriele Nebe, On the classification of even unimodular lattices with a complex structure, Int. J. Number Theory 8 (2012), no. 4, 983-992. MR 2926556, https://doi.org/10.1142/S1793042112500583
  • [10] Pierre Humbert, Réduction de formes quadratiques dans un corps algébrique fini, Comment. Math. Helv. 23 (1949), 50-63 (French). MR 0031521 (11,164a)
  • [11] Max Koecher, Beiträge zu einer Reduktionstheorie in Positivitätsbereichen. I, Math. Ann. 141 (1960), 384-432 (German). MR 0124527 (23 #A1839)
  • [12] Max Koecher, Beiträge zu einer Reduktionstheorie in Positivitätsbereichen. II, Math. Ann. 144 (1961), 175-182 (German). MR 0136771 (25 #232)
  • [13] A. Korkinge and G. Zolotareff, Sur les formes quadratiques positives, Math. Ann. 11 (1877), no. 2, 242-292 (French). MR 1509914, https://doi.org/10.1007/BF01442667
  • [14] Jacques Martinet, Perfect Lattices in Euclidean Spaces, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 327, Springer-Verlag, Berlin, 2003. MR 1957723 (2003m:11099)
  • [15] Eduardo R. Mendoza, Cohomology of PGL2 over imaginary quadratic integers, Dissertation, Rheinische Friedrich-Wilhelms-Universität, Bonn, 1979. MR 0611515 (82g:22012)
  • [16] Bertrand Meyer, Constantes d'Hermite et théorie de Voronoï, Ph.D.-thesis, University of Bordeaux, 2008.
  • [17] Bertrand Meyer, Generalised Hermite constants, Voronoi theory and heights on flag varieties, Bull. Soc. Math. France 137 (2009), no. 1, 127-158 (English, with English and French summaries). MR 2496703 (2010a:11129)
  • [18] O. Timothy O'Meara, Introduction to Quadratic Forms, Classics in Mathematics, Springer-Verlag, Berlin, 2000. Reprint of the 1973 edition. MR 1754311 (2000m:11032)
  • [19] Jürgen Opgenorth, Dual cones and the Voronoi algorithm, Experiment. Math. 10 (2001), no. 4, 599-608. MR 1881760 (2003c:11077)
  • [20] W. Plesken and B. Souvignier, Computing isometries of lattices, J. Symbolic Comput. 24 (1997), no. 3-4, 327-334. Computational algebra and number theory (London, 1993). MR 1484483 (98i:11047), https://doi.org/10.1006/jsco.1996.0130
  • [21] Alexander D. Rahm and Mathias Fuchs, The integral homology of $ {\rm PSL}_2$ of imaginary quadratic integers with nontrivial class group, J. Pure Appl. Algebra 215 (2011), no. 6, 1443-1472. MR 2769243 (2012a:11063), https://doi.org/10.1016/j.jpaa.2010.09.005
  • [22] Achill Schürmann, Computational Geometry of Positive Definite Quadratic Forms, University Lecture Series, vol. 48, American Mathematical Society, Providence, RI, 2009. Polyhedral reduction theories, algorithms, and applications. MR 2466406 (2010a:11130)
  • [23] Achill Schürmann, Enumerating perfect forms, Quadratic forms--algebra, arithmetic, and geometry, Contemp. Math., vol. 493, Amer. Math. Soc., Providence, RI, 2009, pp. 359-377. MR 2537111 (2010g:11110), https://doi.org/10.1090/conm/493/09679
  • [24] Jean-Pierre Serre, Arbres, Amalgames, $ {\rm SL}_{2}$, Société Mathématique de France, Paris, 1977 (French). Avec un sommaire anglais; Rédigé avec la collaboration de Hyman Bass; Astérisque, No. 46. MR 0476875 (57 #16426)
  • [25] Christophe Soulé, The cohomology of $ {\rm SL}_{3}({\bf Z})$, Topology 17 (1978), no. 1, 1-22. MR 0470141 (57 #9908)
  • [26] William Stein, Modular Forms, A Computational Approach, Graduate Studies in Mathematics, vol. 79, American Mathematical Society, Providence, RI, 2007. With an appendix by Paul E. Gunnells. MR 2289048 (2008d:11037)
  • [27] Richard G. Swan, Generators and relations for certain special linear groups, Advances in Math. 6 (1971), 1-77 (1971). MR 0284516 (44 #1741)
  • [28] G. Voronoï, Nouvelles applications des paramètres continus à la théorie des formes quadratiques: 1 Sur quelques propriétés des formes quadratiques positives parfaites, J. Reine Angew. Math 133 (1908), 97-178.
  • [29] -, Nouvelles applications des paramètres continus à la théorie des formes quadratiques: 2 recherches sur les paralléloèdres primitifs, première partie, J. Reine Angew. Math. 134 (1908), 198-287.
  • [30] Takao Watanabe, On an analog of Hermite's constant, J. Lie Theory 10 (2000), no. 1, 33-52. MR 1747690 (2001a:11111)
  • [31] Takao Watanabe, Fundamental Hermite constants of linear algebraic groups, J. Math. Soc. Japan 55 (2003), no. 4, 1061-1080. MR 2003760 (2005f:11260), https://doi.org/10.2969/jmsj/1191418764
  • [32] Dan Yasaki, Hyperbolic tessellations associated to Bianchi groups, Algorithmic number theory, Lecture Notes in Comput. Sci., vol. 6197, Springer, Berlin, 2010, pp. 385-396. MR 2721434 (2012g:11069), https://doi.org/10.1007/978-3-642-14518-6_30

Similar Articles

Retrieve articles in Mathematics of Computation with MSC (2010): 11H55, 11Y99, 11F06

Retrieve articles in all journals with MSC (2010): 11H55, 11Y99, 11F06


Additional Information

Oliver Braun
Affiliation: Lehrstuhl D für Mathematik, RWTH Aachen University, Templergraben 64, D-52062 Aachen, Germany
Email: oliver.braun1@rwth-aachen.de

Renaud Coulangeon
Affiliation: Univ. Bordeaux, IMB, UMR 5251, F-33400 Talence, France, CNRS, IMB, UMR 5251, F-33400 Talence, France
Email: renaud.coulangeon@math.u-bordeaux1.fr

DOI: https://doi.org/10.1090/S0025-5718-2014-02891-3
Received by editor(s): January 14, 2013
Received by editor(s) in revised form: May 27, 2013, and September 9, 2013
Published electronically: November 20, 2014
Article copyright: © Copyright 2014 American Mathematical Society

American Mathematical Society