Remote Access Mathematics of Computation
Green Open Access

Mathematics of Computation

ISSN 1088-6842(online) ISSN 0025-5718(print)



A comparison of duality and energy a posteriori estimates for $ \mathrm{L}_{\infty}(0,T;\mathrm{L}_2(\varOmega))$ in parabolic problems

Authors: Omar Lakkis, Charalambos Makridakis and Tristan Pryer
Journal: Math. Comp. 84 (2015), 1537-1569
MSC (2010): Primary 65N30, 65M15, 80M10; Secondary 65M50, 93C40
Published electronically: December 17, 2014
MathSciNet review: 3335883
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We use the elliptic reconstruction technique in combination with a duality approach to prove a posteriori error estimates for fully discrete backward Euler scheme for linear parabolic equations. As an application, we combine our result with the residual based estimators from the a posteriori estimation for elliptic problems to derive space-error indicators and thus a fully practical version of the estimators bounding the error in the $ \mathrm {L}_{\infty }(0,T;\mathrm {L}_2(\varOmega ))$ norm. These estimators, which are of optimal order, extend those introduced by Eriksson and Johnson in 1991 by taking into account the error induced by the mesh changes and allowing for a more flexible use of the elliptic estimators. For comparison with previous results we derive also an energy-based a posteriori estimate for the $ \mathrm {L}_{\infty }(0,T;\mathrm {L}_2(\varOmega ))$-error which simplifies a previous one given by Lakkis and Makridakis in 2006. We then compare both estimators (duality vs. energy) in practical situations and draw conclusions.

References [Enhancements On Off] (What's this?)

  • [AMN06] Georgios Akrivis, Charalambos Makridakis, and Ricardo H. Nochetto, A posteriori error estimates for the Crank-Nicolson method for parabolic equations, Math. Comp. 75 (2006), no. 254, 511-531. MR 2196979 (2007a:65114),
  • [AO00] Mark Ainsworth and J. Tinsley Oden, A Posteriori Error Estimation in Finite Element Analysis, Wiley-Interscience [John Wiley & Sons], New York, 2000. MR 1885308
  • [BBM05] A. Bergam, C. Bernardi, and Z. Mghazli, A posteriori analysis of the finite element discretization of some parabolic equations, Math. Comp. 74 (2005), no. 251, 1117-1138 (electronic). MR 2136996 (2007c:65072),
  • [BM11] Sören Bartels and Rüdiger Müller, Quasi-optimal and robust a posteriori error estimates in $ L^\infty (L^2)$ for the approximation of Allen-Cahn equations past singularities, Math. Comp. 80 (2011), no. 274, 761-780. MR 2772095 (2012c:65152),
  • [BR78] Ivo Babuška and Werner C. Rheinboldt, Error estimates for adaptive finite element computations, SIAM J. Numer. Anal. 15 (1978), no. 4, 736-754. MR 58:3400
  • [Bra01] Dietrich Braess, Finite Elements, 2nd ed., Cambridge University Press, Cambridge, 2001. Theory, fast solvers, and applications in solid mechanics; Translated from the 1992 German edition by Larry L. Schumaker. MR 1827293 (2001k:65002)
  • [BS07] Susanne C. Brenner and L. Ridgway Scott, The Mathematical Theory of Finite Element Methods, third ed., Texts in Applied Mathematics, vol. 15, Springer-Verlag, New York, 2007.
  • [BV04] Christine Bernardi and Rüdiger Verfürth, A posteriori error analysis of the fully discretized time-dependent Stokes equations, M2AN Math. Model. Numer. Anal. 38 (2004), no. 3, 437-455. MR 2075754 (2005g:65131),
  • [CF04] Zhiming Chen and Jia Feng, An adaptive finite element algorithm with reliable and efficient error control for linear parabolic problems, Math. Comp. 73 (2004), no. 247, 1167-1193 (electronic). MR 2047083 (2005e:65131),
  • [Cia78] Philippe G. Ciarlet, The Finite Element Method for Elliptic Problems, North-Holland Publishing Co., Amsterdam, 1978. Studies in Mathematics and its Applications, Vol. 4. MR 0520174 (58 #25001)
  • [CKNS08] J. Manuel Cascon, Christian Kreuzer, Ricardo H. Nochetto, and Kunibert G. Siebert, Quasi-optimal convergence rate for an adaptive finite element method, SIAM J. Numer. Anal. 46 (2008), no. 5, 2524-2550. MR 2421046 (2009h:65174),
  • [dFN02] Javier de Frutos and Julia Novo, Postprocessing the linear finite element method, SIAM J. Numer. Anal. 40 (2002), no. 3, 805-819 (electronic). MR 1949394 (2004b:65148),
  • [DLM09] Alan Demlow, Omar Lakkis, and Charalambos Makridakis, A posteriori error estimates in the maximum norm for parabolic problems, SIAM J. Numer. Anal. 47 (2009), no. 3, 2157-2176. MR 2519598 (2010e:65142),
  • [DM10] Alan Demlow and Charalambos Makridakis, Sharply local pointwise a posteriori error estimates for parabolic problems, Math. Comp. 79 (2010), no. 271, 1233-1262. MR 2629992 (2011d:65280),
  • [DS11] Alan Demlow and Rob Stevenson, Convergence and quasi-optimality of an adaptive finite element method for controlling $ L_2$ errors, Numer. Math. 117 (2011), no. 2, 185-218. MR 2754849 (2011m:65278),
  • [EJ91] Kenneth Eriksson and Claes Johnson, Adaptive finite element methods for parabolic problems. I. A linear model problem, SIAM J. Numer. Anal. 28 (1991), no. 1, 43-77. MR 1083324 (91m:65274),
  • [EM09] Alexandre Ern and Sébastien Meunier, A posteriori error analysis of Euler-Galerkin approximations to coupled elliptic-parabolic problems, M2AN Math. Model. Numer. Anal. 43 (2009), no. 2, 353-375. MR 2512500 (2010d:65248),
  • [Eva98] Lawrence C. Evans, Partial Differential Equations, Graduate Studies in Mathematics, vol. 19, American Mathematical Society, Providence, RI, 1998. MR 1625845 (99e:35001)
  • [GL10] Emmanuil H. Georgoulis and Omar Lakkis, A posteriori error bounds for discontinuous galerkin methods for quasilinear parabolic problems, Numerical Mathematics and Advanced Applications 2009 (Gunilla Kreiss, Per Lötstedt, Axel Målqvist, and Maya Neytcheva, eds.), Springer Berlin Heidelberg, 2010, pp. 351-358 (English).
  • [GLV11] Emmanuil H. Georgoulis, Omar Lakkis, and Juha M. Virtanen, A posteriori error control for discontinuous Galerkin methods for parabolic problems, SIAM J. Numer. Anal. 49 (2011), no. 2, 427-458. MR 2784879 (2012d:65205),
  • [KMSS12] Christian Kreuzer, Christian A. Möller, Alfred Schmidt, and Kunibert G. Siebert, Design and convergence analysis for an adaptive discretization of the heat equation, IMA J. Numer. Anal. 32 (2012), no. 4, 1375-1403. MR 2991832,
  • [Kos94] Igor Kossaczký, A recursive approach to local mesh refinement in two and three dimensions, J. Comput. Appl. Math. 55 (1994), no. 3, 275-288. MR 1329875 (95m:65207),
  • [LM06] Omar Lakkis and Charalambos Makridakis, Elliptic reconstruction and a posteriori error estimates for fully discrete linear parabolic problems, Math. Comp. 75 (2006), no. 256, 1627-1658. MR 2240628 (2007e:65122),
  • [LN03] Xiaohai Liao and Ricardo H. Nochetto, Local a posteriori error estimates and adaptive control of pollution effects, Numer. Methods Partial Differential Equations 19 (2003), no. 4, 421-442. MR 1980188 (2004c:65130),
  • [LP12] Omar Lakkis and Tristan Pryer, Gradient recovery in adaptive finite-element methods for parabolic problems, IMA J. Numer. Anal. 32 (2012), no. 1, 246-278. MR 2875251,
  • [MN03] Charalambos Makridakis and Ricardo H. Nochetto, Elliptic reconstruction and a posteriori error estimates for parabolic problems, SIAM J. Numer. Anal. 41 (2003), no. 4, 1585-1594. MR 2034895 (2004k:65157),
  • [Pic98] Marco Picasso, Adaptive finite elements for a linear parabolic problem, Comput. Methods Appl. Mech. Engrg. 167 (1998), no. 3-4, 223-237. MR 1673951 (2000b:65188),
  • [SS05] Alfred Schmidt and Kunibert G. Siebert, Design of adaptive Finite Element Software, Lecture Notes in Computational Science and Engineering, vol. 42, Springer-Verlag, Berlin, 2005. The finite element toolbox ALBERTA; With 1 CD-ROM (Unix/Linux). MR 2127659 (2005i:65003)
  • [Tho06] Vidar Thomée, Galerkin Finite Element Methods for Parabolic Problems, 2nd ed., Springer Series in Computational Mathematics, vol. 25, Springer-Verlag, Berlin, 2006. MR 2249024 (2007b:65003)
  • [Ver96] Rüdiger Verfürth, A Review of a Posteriori Error Estimation and Adaptive Mesh-Refinement Techniques, Wiley-Teubner, Chichester-Stuttgart, 1996.
  • [Ver03] R. Verfürth, A posteriori error estimates for finite element discretizations of the heat equation, Calcolo 40 (2003), no. 3, 195-212. MR 2025602 (2005f:65131),
  • [Whe73] Mary Fanett Wheeler, A priori $ L_{2}$ error estimates for Galerkin approximations to parabolic partial differential equations, SIAM J. Numer. Anal. 10 (1973), 723-759. MR 0351124 (50 #3613)

Similar Articles

Retrieve articles in Mathematics of Computation with MSC (2010): 65N30, 65M15, 80M10, 65M50, 93C40

Retrieve articles in all journals with MSC (2010): 65N30, 65M15, 80M10, 65M50, 93C40

Additional Information

Omar Lakkis
Affiliation: Department of Mathematics, University of Sussex, Brighton, GB-BN1 9QH, England United Kingdom

Charalambos Makridakis
Affiliation: Department of Applied Mathematics, University of Crete, GR-71409 Heraklion, Greece — and — Institute for Applied and Computational Mathematics, Foundation for Research and Technology-Hellas, Vasilika Vouton P.O.Box 1527, GR-71110 Heraklion, Greece

Tristan Pryer
Affiliation: School of Mathematics, Statistics & Actuarial Science, University of Kent, Canterbury, GB-CT2 7NF, England United Kingdom

Keywords: Finite element methods, heat equation, \aposteriori error estimate, linear parabolic PDE, reaction-diffusion, elliptic reconstruction, convergence, superconvergence, optimality, duality, dissipation
Received by editor(s): September 14, 2012
Received by editor(s) in revised form: July 6, 2013, and November 16, 2013
Published electronically: December 17, 2014
Additional Notes: This work was partially supported by the E.U. RTN Hyke HPRN-CT-2002-00282 and the Marie Curie Fellowship Foundation. The first author wishes to thank the Hausdorff Institute for Mathematics, Bonn.
The second author was supported at Sussex by a EPSRC D. Phil. postgraduate research fellowship.
Article copyright: © Copyright 2014 by the authors

American Mathematical Society