Remote Access Mathematics of Computation
Green Open Access

Mathematics of Computation

ISSN 1088-6842(online) ISSN 0025-5718(print)

 
 

 

A generalized Hermite constant for imaginary quadratic fields


Authors: Wai Kiu Chan, María Inés Icaza and Emilio A. Lauret
Journal: Math. Comp. 84 (2015), 1883-1900
MSC (2010): Primary 11H50, 11H55
DOI: https://doi.org/10.1090/S0025-5718-2015-02903-2
Published electronically: January 22, 2015
MathSciNet review: 3335896
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We introduce the projective Hermite constant for positive definite binary hermitian forms associated with an imaginary quadratic number field $ K$. It is a lower bound for the classical Hermite constant, and these two constants coincide when $ K$ has class number one. Using the geometric tools developed by Mendoza and Vogtmann for their study of the homology of the Bianchi groups, we compute the projective Hermite constants for those $ K$ whose absolute discriminants are less than 70, and determine the hermitian forms that attain the projective Hermite constants in these cases. A comparison of the projective hermitian constant with some other generalizations of the classical Hermite constant is also given.


References [Enhancements On Off] (What's this?)

  • [1] Ricardo Baeza, Renaud Coulangeon, Maria Ines Icaza, and Manuel O'Ryan, Hermite's constant for quadratic number fields, Experiment. Math. 10 (2001), no. 4, 543-551. MR 1881755 (2003a:11084)
  • [2] R. Coulangeon, M. I. Icaza, and M. O'Ryan, Lenstra's constant and extreme forms in number fields, Experiment. Math. 16 (2007), no. 4, 455-462. MR 2378486 (2008m:11131)
  • [3] Jürgen Elstrodt, Fritz Grunewald, and Jens Mennicke, Zeta-functions of binary Hermitian forms and special values of Eisenstein series on three-dimensional hyperbolic space, Math. Ann. 277 (1987), no. 4, 655-708. MR 901712 (88m:11021), https://doi.org/10.1007/BF01457865
  • [4] J. Elstrodt, F. Grunewald, and J. Mennicke, Groups Acting on Hyperbolic Space, Harmonic analysis and number theory., Springer Monographs in Mathematics, Springer-Verlag, Berlin, 1998. MR 1483315 (98g:11058)
  • [5] M. I. Icaza, Hermite constant and extreme forms for algebraic number fields, J. London Math. Soc. (2) 55 (1997), no. 1, 11-22. MR 1423282 (97j:11034), https://doi.org/10.1112/S0024610796004668
  • [6] Eduardo R. Mendoza, Cohomology of $ {\rm PGL}_{2}$ over Imaginary Quadratic Integers, Bonner Mathematische Schriften [Bonn Mathematical Publications], 128, Universität Bonn Mathematisches Institut, Bonn, 1979. Dissertation, Rheinische Friedrich-Wilhelms-Universität, Bonn, 1979. MR 611515 (82g:22012)
  • [7] Hannskarl Oberseider, Über das Minimum positiver Hermitescher Formen, Math. Z. 38 (1934), no. 1, 591-632 (German). MR 1545469, https://doi.org/10.1007/BF01170656
  • [8] Shin Ohno and Takao Watanabe, Estimates of Hermite constants for algebraic number fields, Comment. Math. Univ. St. Paul. 50 (2001), no. 1, 53-63. MR 1839965 (2002f:11082)
  • [9] A. Oppenheim, The minima of positive definite Hermitian binary quadratic forms, Math. Z. 38 (1934), no. 1, 538-545. MR 1545466, https://doi.org/10.1007/BF01170653
  • [10] Oskar Perron, Über das Minimum positiver Hermitescher Formen, Math. Z. 36 (1933), no. 1, 148-160 (German). MR 1545336, https://doi.org/10.1007/BF01188614
  • [11] M. E. Pohst and M. Wagner, On the computation of Hermite-Humbert constants: the algorithm of Cohn revisited, J. Algebra 322 (2009), no. 3, 936-947. MR 2531231 (2010g:11185), https://doi.org/10.1016/j.jalgebra.2009.04.037
  • [12] Michael E. Pohst and Marcus Wagner, On the computation of Hermite-Humbert constants for real quadratic number fields, J. Théor. Nombres Bordeaux 17 (2005), no. 3, 905-920 (English, with English and French summaries). MR 2212131 (2007a:11101)
  • [13] A. Speiser, Über die Minima Hermitescher Formen, J. Reine Angew. Math 167 (1932), 88-97.
  • [14] Jeffrey Lin Thunder, Higher-dimensional analogs of Hermite's constant, Michigan Math. J. 45 (1998), no. 2, 301-314. MR 1637658 (99f:11082), https://doi.org/10.1307/mmj/1030132184
  • [15] Karen Vogtmann, Rational homology of Bianchi groups, Math. Ann. 272 (1985), no. 3, 399-419. MR 799670 (87a:22025), https://doi.org/10.1007/BF01455567
  • [16] Takao Watanabe, On an analog of Hermite's constant, J. Lie Theory 10 (2000), no. 1, 33-52. MR 1747690 (2001a:11111)
  • [17] Takao Watanabe, Fundamental Hermite constants of linear algebraic groups, J. Math. Soc. Japan 55 (2003), no. 4, 1061-1080. MR 2003760 (2005f:11260), https://doi.org/10.2969/jmsj/1191418764

Similar Articles

Retrieve articles in Mathematics of Computation with MSC (2010): 11H50, 11H55

Retrieve articles in all journals with MSC (2010): 11H50, 11H55


Additional Information

Wai Kiu Chan
Affiliation: Department of Mathematics and Computer science, Wesleyan University, Middletown, Connecticut 06459–0128
Email: wkchan@wesleyan.edu

María Inés Icaza
Affiliation: Instituto de Matemática y Física, Universidad de Talca, Casilla 747, Talca, Chile
Email: icazap@inst-mat.utalca.cl

Emilio A. Lauret
Affiliation: FaMAF-CIEM, Universidad Nacional de Córdoba, Ciudad Universitaria 5000, Córdoba, Argentina
Email: elauret@famaf.unc.edu.ar

DOI: https://doi.org/10.1090/S0025-5718-2015-02903-2
Keywords: Minima of hermitian forms, extreme hermitian forms, Hermite constant
Received by editor(s): January 10, 2011
Received by editor(s) in revised form: July 5, 3013, and October 8, 2013
Published electronically: January 22, 2015
Article copyright: © Copyright 2015 American Mathematical Society

American Mathematical Society