Remote Access Mathematics of Computation
Green Open Access

Mathematics of Computation

ISSN 1088-6842(online) ISSN 0025-5718(print)

 
 

 

Odd perfect numbers, Diophantine equations, and upper bounds


Author: Pace P. Nielsen
Journal: Math. Comp. 84 (2015), 2549-2567
MSC (2010): Primary 11N25; Secondary 11Y50
DOI: https://doi.org/10.1090/S0025-5718-2015-02941-X
Published electronically: February 18, 2015
MathSciNet review: 3356038
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We obtain a new upper bound for odd multiperfect numbers. If $ N$ is an odd perfect number with $ k$ distinct prime divisors and $ P$ is its largest prime divisor, we find as a corollary that $ 10^{12}P^{2}N<2^{4^{k}}$. Using this new bound, and extensive computations, we derive the inequality $ k\geq 10$.


References [Enhancements On Off] (What's this?)

  • [1] R. P. Brent, G. L. Cohen, and H. J. J. te Riele, Improved techniques for lower bounds for odd perfect numbers, Math. Comp. 57 (1991), no. 196, 857-868. MR 1094940 (92c:11004), https://doi.org/10.2307/2938723
  • [2] Joseph E. Z. Chein, An Odd Perfect Number has at Least 8 Prime Factors, ProQuest LLC, Ann Arbor, MI, 1979. Thesis (Ph.D.)-The Pennsylvania State University. MR 2630408
  • [3] Yong-Gao Chen, Improved upper bounds for odd multiperfect numbers, Bull. Aust. Math. Soc. 89 (2014), no. 3, 353-359. MR 3254745, https://doi.org/10.1017/S0004972713000488
  • [4] R. J. Cook, Bounds for odd perfect numbers, Number theory (Ottawa, ON, 1996) CRM Proc. Lecture Notes, vol. 19, Amer. Math. Soc., Providence, RI, 1999, pp. 67-71. MR 1684591 (2000d:11010)
  • [5] Samuel J. Dittmer, Spoof odd perfect numbers, Math. Comp. 83 (2014), no. 289, 2575-2582. MR 3223347, https://doi.org/10.1090/S0025-5718-2013-02793-7
  • [6] Peter Hagis Jr., Outline of a proof that every odd perfect number has at least eight prime factors, Math. Comp. 35 (1980), no. 151, 1027-1032. MR 572873 (81k:10004), https://doi.org/10.2307/2006211
  • [7] D. R. Heath-Brown, Odd perfect numbers, Math. Proc. Cambridge Philos. Soc. 115 (1994), no. 2, 191-196. MR 1277055 (96b:11130), https://doi.org/10.1017/S0305004100072030
  • [8] Douglas E. Iannucci, The second largest prime divisor of an odd perfect number exceeds ten thousand, Math. Comp. 68 (1999), no. 228, 1749-1760. MR 1651761 (2000i:11200), https://doi.org/10.1090/S0025-5718-99-01126-6
  • [9] Douglas E. Iannucci, The third largest prime divisor of an odd perfect number exceeds one hundred, Math. Comp. 69 (2000), no. 230, 867-879. MR 1651762 (2000i:11201), https://doi.org/10.1090/S0025-5718-99-01127-8
  • [10] Wilfrid Keller and Jörg Richstein, Solutions of the congruence $ a^{p-1}\equiv 1\pmod {p^r}$, Math. Comp. 74 (2005), no. 250, 927-936 (electronic). MR 2114655 (2005i:11004), https://doi.org/10.1090/S0025-5718-04-01666-7
  • [11] Michael J. Mossinghoff, Wieferich pairs and Barker sequences, Des. Codes Cryptogr. 53 (2009), no. 3, 149-163. MR 2545689 (2011c:11039), https://doi.org/10.1007/s10623-009-9301-3
  • [12] Pace P. Nielsen, An upper bound for odd perfect numbers, Integers 3 (2003), A14, 9. MR 2036480 (2004k:11009)
  • [13] Pace P. Nielsen, Odd perfect numbers have at least nine distinct prime factors, Math. Comp. 76 (2007), no. 260, 2109-2126. MR 2336286 (2008g:11153), https://doi.org/10.1090/S0025-5718-07-01990-4
  • [14] Pascal Ochem and Michaël Rao, Odd perfect numbers are greater than $ 10^{1500}$, Math. Comp. 81 (2012), no. 279, 1869-1877. MR 2904606, https://doi.org/10.1090/S0025-5718-2012-02563-4
  • [15] Carl Pomerance, Odd perfect numbers are divisible by at least seven distinct primes, Acta Arith. 25 (1973/74), 265-300. MR 0340169 (49 #4925)
  • [16] John Voight, On the nonexistence of odd perfect numbers, MASS selecta, Amer. Math. Soc., Providence, RI, 2003, pp. 293-300. MR 2027187 (2004j:11006)

Similar Articles

Retrieve articles in Mathematics of Computation with MSC (2010): 11N25, 11Y50

Retrieve articles in all journals with MSC (2010): 11N25, 11Y50


Additional Information

Pace P. Nielsen
Affiliation: Department of Mathematics, Brigham Young University, Provo, Utah 84602
Email: pace@math.byu.edu

DOI: https://doi.org/10.1090/S0025-5718-2015-02941-X
Keywords: Diophantine equation, perfect number
Received by editor(s): June 14, 2013
Received by editor(s) in revised form: December 16, 2013
Published electronically: February 18, 2015
Article copyright: © Copyright 2015 American Mathematical Society

American Mathematical Society