Remote Access Mathematics of Computation
Green Open Access

Mathematics of Computation

ISSN 1088-6842(online) ISSN 0025-5718(print)

Request Permissions   Purchase Content 
 
 

 

Extension by zero in discrete trace spaces: Inverse estimates


Authors: Ralf Hiptmair, Carlos Jerez-Hanckes and Shipeng Mao
Journal: Math. Comp. 84 (2015), 2589-2615
MSC (2010): Primary 65N12, 65N15, 65N30
DOI: https://doi.org/10.1090/mcom/2955
Published electronically: April 21, 2015
MathSciNet review: 3378840
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We consider lowest-order $ {\boldsymbol H}^{-\frac {1}{2}}(\operatorname {div}_\Gamma , \Gamma )$- and $ H^{-\frac {1}{2}}(\Gamma )$-conforming boundary element spaces supported on part of the boundary $ \Gamma $ of a Lipschitz polyhedron. Assuming families of triangular meshes created by regular refinement, we prove that on these spaces the norms of the extension by zero operators with respect to (localized) trace norms increase poly-logarithmically with the mesh width. Our approach harnesses multilevel norm equivalences for boundary element spaces, inherited from stable multilevel splittings of finite element spaces.


References [Enhancements On Off] (What's this?)

  • [1] Mark Ainsworth, Johnny Guzmán, and Francisco-Javier Sayas, Discrete extension operators for mixed finite element spaces on locally refined meshes, arXiv:1406.5534v2 [math.NA] (2015).
  • [2] Mark Ainsworth and William McLean, Multilevel diagonal scaling preconditioners for boundary element equations on locally refined meshes, Numer. Math. 93 (2003), no. 3, 387-413. MR 1953746 (2004i:65130), https://doi.org/10.1007/s002110100391
  • [3] Ana Alonso and Alberto Valli, An optimal domain decomposition preconditioner for low-frequency time-harmonic Maxwell equations, Math. Comp. 68 (1999), no. 226, 607-631. MR 1609607 (99i:78002), https://doi.org/10.1090/S0025-5718-99-01013-3
  • [4] Douglas N. Arnold, Richard S. Falk, and Ragnar Winther, Multigrid in $ H({\rm div})$ and $ H({\rm curl})$, Numer. Math. 85 (2000), no. 2, 197-217. MR 1754719 (2001d:65161), https://doi.org/10.1007/PL00005386
  • [5] D. N. Arnold, R. S. Falk, and R. Winther, Multigrid preconditioning in $ H({\rm div})$ on non-convex polygons, Comput. Appl. Math. 17 (1998), no. 3, 303-315. MR 1687885 (2000k:65224)
  • [6] J. Bey, Tetrahedral grid refinement, Computing 55 (1995), no. 4, 355-378 (English, with English and German summaries). MR 1370107 (96i:65105), https://doi.org/10.1007/BF02238487
  • [7] Folkmar Bornemann and Harry Yserentant, A basic norm equivalence for the theory of multilevel methods, Numer. Math. 64 (1993), no. 4, 455-476. MR 1213412 (94b:65155), https://doi.org/10.1007/BF01388699
  • [8] James H. Bramble, Multigrid Methods, Pitman Research Notes in Mathematics Series, vol. 294, Longman Scientific & Technical, Harlow; copublished in the United States with John Wiley & Sons, Inc., New York, 1993. MR 1247694 (95b:65002)
  • [9] James H. Bramble, Joseph E. Pasciak, and Alfred H. Schatz, The construction of preconditioners for elliptic problems by substructuring. IV, Math. Comp. 53 (1989), no. 187, 1-24. MR 970699 (89m:65098), https://doi.org/10.2307/2008346
  • [10] Franco Brezzi and Michel Fortin, Mixed and Hybrid Finite Element Methods, Springer Series in Computational Mathematics, vol. 15, Springer-Verlag, New York, 1991. MR 1115205 (92d:65187)
  • [11] A. Buffa and P. Ciarlet Jr., On traces for functional spaces related to Maxwell's equations. I. An integration by parts formula in Lipschitz polyhedra, Math. Methods Appl. Sci. 24 (2001), no. 1, 9-30. MR 1809491 (2002b:78024), https://doi.org/10.1002/1099-1476(20010110)24:1$ \langle $9::AID-MMA191$ \rangle $3.0.CO;2-2
  • [12] A. Buffa and P. Ciarlet Jr., On traces for functional spaces related to Maxwell's equations. II. Hodge decompositions on the boundary of Lipschitz polyhedra and applications, Math. Methods Appl. Sci. 24 (2001), no. 1, 31-48. MR 1809492 (2002b:78025), https://doi.org/10.1002/1099-1476(20010110)24:1<9::AID-MMA191>3.0.CO;2-2
  • [13] A. Buffa, M. Costabel, and D. Sheen, On traces for $ {\bf H}({\bf curl},\Omega )$ in Lipschitz domains, J. Math. Anal. Appl. 276 (2002), no. 2, 845-867. MR 1944792 (2004i:35045), https://doi.org/10.1016/S0022-247X(02)00455-9
  • [14] Huangxin Chen, Ronald H. W. Hoppe, and Xuejun Xu, Uniform convergence of local multigrid methods for the time-harmonic Maxwell equation, ESAIM Math. Model. Numer. Anal. 47 (2013), no. 1, 125-147. MR 2968698, https://doi.org/10.1051/m2an/2012023
  • [15] Choi-Hong Lai, Petter E. Bjørstad, Mark Cross, and Olof Widlund (eds.), Eleventh International Conference on Domain Decomposition Methods, DDM.org, Augsburg, 1999. Available electronically at http://www.ddm.org/DD11/index.html. MR 1827403
  • [16] Snorre H. Christiansen and Ragnar Winther, Smoothed projections in finite element exterior calculus, Math. Comp. 77 (2008), no. 262, 813-829. MR 2373181 (2009a:65310), https://doi.org/10.1090/S0025-5718-07-02081-9
  • [17] Clark R. Dohrmann and Olof B. Widlund, An iterative substructuring algorithm for two-dimensional problems in $ H({\rm curl})$, SIAM J. Numer. Anal. 50 (2012), no. 3, 1004-1028. MR 2970732, https://doi.org/10.1137/100818145
  • [18] C. Dohrmann and O. Widlund, Some recent tools and a BDDC algorithm for 3D problems in $ \mathbb{H}(\mathrm {curl})$, in Domain Decomposition Methods in Science and Engineering XX, R. Bank, M. Holst, O. Widlund, and J. Xu, eds., vol. 91 of Lecture Notes in Computational Science and Engineering, Springer, Berlin, Heidelberg, 2013, pp. 15-25.
  • [19] M. Dryja, A method of domain decomposition for three-dimensional finite element elliptic problems, First International Symposium on Domain Decomposition Methods for Partial Differential Equations (Paris, 1987) SIAM, Philadelphia, PA, 1988, pp. 43-61. MR 972511 (90b:65200)
  • [20] Alexandre Ern and Jean-Luc Guermond, Theory and Practice of Finite Elements, Applied Mathematical Sciences, vol. 159, Springer-Verlag, New York, 2004. MR 2050138 (2005d:65002)
  • [21] Vivette Girault and Pierre-Arnaud Raviart, Finite Element Methods for Navier-Stokes Equations, Theory and Algorithms, Springer Series in Computational Mathematics, vol. 5, Springer-Verlag, Berlin, 1986. MR 851383 (88b:65129)
  • [22] P. Grisvard, Singularities in Boundary Value Problems, Recherches en Mathématiques Appliquées [Research in Applied Mathematics], vol. 22, Masson, Paris; Springer-Verlag, Berlin, 1992. MR 1173209 (93h:35004)
  • [23] Norbert Heuer, Ernst P. Stephan, and Thanh Tran, Multilevel additive Schwarz method for the $ h$-$ p$ version of the Galerkin boundary element method, Math. Comp. 67 (1998), no. 222, 501-518. MR 1451325 (98g:65108), https://doi.org/10.1090/S0025-5718-98-00926-0
  • [24] R. Hiptmair, Multigrid method for $ \mathbf {H}({\rm div})$ in three dimensions, Electron. Trans. Numer. Anal. 6 (1997), no. Dec., 133-152. Special issue on multilevel methods (Copper Mountain, CO, 1997). MR 1615161 (99c:65232)
  • [25] R. Hiptmair, Multigrid method for Maxwell's equations, SIAM J. Numer. Anal. 36 (1999), no. 1, 204-225. MR 1654571 (99j:65229), https://doi.org/10.1137/S0036142997326203
  • [26] R. Hiptmair, Finite elements in computational electromagnetism, Acta Numer. 11 (2002), 237-339. MR 2009375 (2004k:78028), https://doi.org/10.1017/S0962492902000041
  • [27] R. Hiptmair, Analysis of multilevel methods for eddy current problems, Math. Comp. 72 (2003), no. 243, 1281-1303. MR 1972736 (2004c:78033), https://doi.org/10.1090/S0025-5718-02-01468-0
  • [28] R. Hiptmair and C. Jerez-Hanckes, Multiple traces boundary integral formulation for Helmholtz transmission problems, Adv. Comput. Math. 37 (2012), no. 1, 39-91. MR 2927645, https://doi.org/10.1007/s10444-011-9194-3
  • [29] Ralf Hiptmair and Shipeng Mao, Stable multilevel splittings of boundary edge element spaces, BIT 52 (2012), no. 3, 661-685. MR 2965296, https://doi.org/10.1007/s10543-012-0369-1
  • [30] R. Hiptmair and W.-Y. Zheng, Local multigrid in $ \mathbf {H}(\mathbf {curl})$, Tech. Rep. 2007-03, SAM, ETH Zürich, Switzerland, March 2007.
    http://arxiv.org/abs/0901.0764.
  • [31] Ralf Hiptmair and Weiying Zheng, Local multigrid in $ {\bf H}(\bf {curl})$, J. Comput. Math. 27 (2009), no. 5, 573-603. MR 2536903 (2010h:65249), https://doi.org/10.4208/jcm.2009.27.5.012
  • [32] Q. Hu and J. Zou, A non-overlapping domain decomposition method for Maxwell's equation in three dimensions, SIAM J. Numer. Anal., 41 (2003), pp. 1682-1708.
  • [33] Qiya Hu and Jun Zou, Substructuring preconditioners for saddle-point problems arising from Maxwell's equations in three dimensions, Math. Comp. 73 (2004), no. 245, 35-61. MR 2034110 (2004m:65197), https://doi.org/10.1090/S0025-5718-03-01541-2
  • [34] Igor Kossaczký, A recursive approach to local mesh refinement in two and three dimensions, J. Comput. Appl. Math. 55 (1994), no. 3, 275-288. MR 1329875 (95m:65207), https://doi.org/10.1016/0377-0427(94)90034-5
  • [35] J. Lions and F. Magenes, Nonhomogeneous boundary value problems and applications, Springer-Verlag, Berlin, 1972.
  • [36] William McLean, Strongly elliptic systems and boundary integral equations, Cambridge University Press, Cambridge, 2000. MR 1742312 (2001a:35051)
  • [37] W. McLean and O. Steinbach, Boundary element preconditioners for a hypersingular integral equation on an interval, Adv. Comput. Math. 11 (1999), no. 4, 271-286. MR 1732138 (2000k:65236), https://doi.org/10.1023/A:1018944530343
  • [38] J.-C. Nédélec, Mixed finite elements in $ {\bf R}^{3}$, Numer. Math. 35 (1980), no. 3, 315-341. MR 592160 (81k:65125), https://doi.org/10.1007/BF01396415
  • [39] P. Oswald, On function spaces related to finite element approximation theory, Z. Anal. Anwendungen 9 (1990), no. 1, 43-64 (English, with German and Russian summaries). MR 1063242 (91g:65246)
  • [40] P. Oswald, On discrete norm estimates related to multilevel preconditioners in the finite element method, in Constructive Theory of Functions, Proc. Int. Conf. Varna 1991, K. Ivanov, P. Petrushev, and B. Sendov, eds., Bulg. Acad. Sci., 1992, pp. 203-214.
  • [41] Peter Oswald, Multilevel finite element approximation, Teubner Skripten zur Numerik. [Teubner Scripts on Numerical Mathematics], B. G. Teubner, Stuttgart, 1994. Theory and applications. MR 1312165 (95k:65110)
  • [42] Stefan A. Sauter and Christoph Schwab, Boundary Element Methods, Springer Series in Computational Mathematics, vol. 39, Springer-Verlag, Berlin, 2011. Translated and expanded from the 2004 German original. MR 2743235 (2011i:65003)
  • [43] L. Ridgway Scott and Shangyou Zhang, Finite element interpolation of nonsmooth functions satisfying boundary conditions, Math. Comp. 54 (1990), no. 190, 483-493. MR 1011446 (90j:65021), https://doi.org/10.2307/2008497
  • [44] Luc Tartar, An Introduction to Sobolev Spaces and Interpolation Spaces, Lecture Notes of the Unione Matematica Italiana, vol. 3, Springer, Berlin; UMI, Bologna, 2007. MR 2328004 (2008g:46055)
  • [45] Andrea Toselli and Olof Widlund, Domain Decomposition Methods--Algorithms and Theory, Springer Series in Computational Mathematics, vol. 34, Springer-Verlag, Berlin, 2005. MR 2104179 (2005g:65006)
  • [46] Jinchao Xu, Iterative methods by space decomposition and subspace correction, SIAM Rev. 34 (1992), no. 4, 581-613. MR 1193013 (93k:65029), https://doi.org/10.1137/1034116
  • [47] Jinchao Xu and Jun Zou, Some nonoverlapping domain decomposition methods, SIAM Rev. 40 (1998), no. 4, 857-914. MR 1659681 (99m:65241), https://doi.org/10.1137/S0036144596306800
  • [48] Jinchao Xu, Long Chen, and Ricardo H. Nochetto, Optimal multilevel methods for $ H({\rm grad})$, $ H({\rm curl})$, and $ H({\rm div})$ systems on graded and unstructured grids, Multiscale, nonlinear and adaptive approximation, Springer, Berlin, 2009, pp. 599-659. MR 2648382 (2011k:65178), https://doi.org/10.1007/978-3-642-03413-8_14
  • [49] Xuejun Zhang, Multilevel Schwarz methods, Numer. Math. 63 (1992), no. 4, 521-539. MR 1189535 (93h:65047), https://doi.org/10.1007/BF01385873

Similar Articles

Retrieve articles in Mathematics of Computation with MSC (2010): 65N12, 65N15, 65N30

Retrieve articles in all journals with MSC (2010): 65N12, 65N15, 65N30


Additional Information

Ralf Hiptmair
Affiliation: SAM, ETH Zürich, CH-8092 Zürich, Switzerland
Email: hiptmair@sam.math.ethz.ch

Carlos Jerez-Hanckes
Affiliation: School of Engineering, Pontificia Universidad Católica de Chile, Santiago, Chile
Email: cjerez@ing.puc.cl

Shipeng Mao
Affiliation: LSEC, Institute of Computational Mathematics, Academy of Mathematics and System Science, Chinese Academy of Sciences, Beijing, 100190, People’s Republic of China
Email: maosp@lses.cc.ac.cn

DOI: https://doi.org/10.1090/mcom/2955
Keywords: Boundary finite element spaces, inverse estimates, multilevel norm equivalences
Received by editor(s): October 22, 2012
Received by editor(s) in revised form: March 18, 2014
Published electronically: April 21, 2015
Additional Notes: The work of the second author was funded by FONDECYT 11121166 and CONICYT project Anillo ACT1118 (ANANUM)
The work of the third author was partly supported by Thales SA under contract “Preconditioned Boundary Element Methods for Electromagnetic Scattering at Dielectric Objects” and NSFC 11101414, 11101386, 11471329
Article copyright: © Copyright 2015 American Mathematical Society

American Mathematical Society