Remote Access Mathematics of Computation
Green Open Access

Mathematics of Computation

ISSN 1088-6842(online) ISSN 0025-5718(print)

 
 

 

Variational formulation of problems involving fractional order differential operators


Authors: Bangti Jin, Raytcho Lazarov, Joseph Pasciak and William Rundell
Journal: Math. Comp. 84 (2015), 2665-2700
MSC (2010): Primary 65L60, 65N12, 65N30
DOI: https://doi.org/10.1090/mcom/2960
Published electronically: April 30, 2015
MathSciNet review: 3378843
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: In this work, we consider boundary value problems involving either Caputo or Riemann-Liouville fractional derivatives of order $ \alpha \in (1,2)$ on the unit interval $ (0,1)$. These fractional derivatives lead to nonsymmetric boundary value problems, which are investigated from a variational point of view. The variational problem for the Riemann-Liouville case is coercive on the space $ H_0^{\alpha /2}(0,1)$ but the solutions are less regular, whereas that for the Caputo case involves different test and trial spaces. The numerical analysis of these problems requires the so-called shift theorems which show that the solutions of the variational problem are more regular. The regularity pickup enables one to establish convergence rates of the finite element approximations. The analytical theory is then applied to the Sturm-Liouville problem involving a fractional derivative in the leading term. Finally, extensive numerical results are presented to illustrate the error estimates for the source problem and eigenvalue problem.


References [Enhancements On Off] (What's this?)

  • [1] Robert A. Adams and John J. F. Fournier, Sobolev Spaces, 2nd ed., Pure and Applied Mathematics (Amsterdam), vol. 140, Elsevier/Academic Press, Amsterdam, 2003. MR 2424078 (2009e:46025)
  • [2] Qasem M. Al-Mdallal, An efficient method for solving fractional Sturm-Liouville problems, Chaos Solitons Fractals 40 (2009), no. 1, 183-189. MR 2517924 (2010f:65133), https://doi.org/10.1016/j.chaos.2007.07.041
  • [3] I. Babuška and J. Osborn, Eigenvalue problems, Handbook of Numerical Analysis, Vol. II, Handb. Numer. Anal., II, North-Holland, Amsterdam, 1991, pp. 641-787. MR 1115240
  • [4] D. A. Benson, S. W. Wheatcraft, and M. M. Meerschaert, The fractional-order governing equation of Lévy motion, Water Resour. Res. 36 (2000), no. 6, 1413-1424.
  • [5] A. S. Chaves, A fractional diffusion equation to describe Lévy flights, Phys. Lett. A 239 (1998), no. 1-2, 13-16. MR 1616103 (99a:82067), https://doi.org/10.1016/S0375-9601(97)00947-X
  • [6] Klaus Deimling, Nonlinear Functional Analysis, Springer-Verlag, Berlin, 1985. MR 787404 (86j:47001)
  • [7] Diego del-Castillo-Negrete, Chaotic transport in zonal flows in analogous geophysical and plasma systems, Phys. Plasmas 7 (2000), no. 5, 1702-1711. 41st Annual Meeting of the Division of Plasma Physics of the American Physical Society (Seattle, WA, 1999). MR 1784245 (2001f:76021), https://doi.org/10.1063/1.873988
  • [8] D. del-Castillo-Negrete, B. A. Carreras, and V. E. Lynch, Front dynamics in reaction-diffusion systems with Levy flights, Phys. Rev. Lett. 91 (2003), (1):018302, 4 pp.
  • [9] D. del-Castillo-Negrete, B. A. Carreras, and V. E. Lynch, Nondiffusive transport in plasma turbulence: a fractional diffusion approach, Phys. Rev. Lett. 94 (2005), (6):065003, 4 pp.
  • [10] Mkhitar M. Djrbashian, Harmonic Analysis and Boundary Value Problems in the Complex Domain, Operator Theory: Advances and Applications, vol. 65, Birkhäuser Verlag, Basel, 1993. Translated from the manuscript by H. M. Jerbashian and A. M. Jerbashian [A. M. Dzhrbashyan]. MR 1249271 (95f:30039)
  • [11] Nelson Dunford and Jacob T. Schwartz, Linear Operators. I. General Theory, With the assistance of W. G. Bade and R. G. Bartle. Pure and Applied Mathematics, Vol. 7, Interscience Publishers, Inc., New York; Interscience Publishers, Ltd., London, 1958. MR 0117523 (22 #8302)
  • [12] M. M. Džrbašjan, A boundary value problem for a Sturm-Liouville type differential operator of fractional order, Izv. Akad. Nauk Armjan. SSR Ser. Mat. 5 (1970), no. 2, 71-96 (Russian, with Armenian and English summaries). MR 0414982 (54 #3074)
  • [13] Alexandre Ern and Jean-Luc Guermond, Theory and Practice of Finite Elements, Applied Mathematical Sciences, vol. 159, Springer-Verlag, New York, 2004. MR 2050138 (2005d:65002)
  • [14] Vincent J. Ervin and John Paul Roop, Variational formulation for the stationary fractional advection dispersion equation, Numer. Methods Partial Differential Equations 22 (2006), no. 3, 558-576. MR 2212226 (2006m:65265), https://doi.org/10.1002/num.20112
  • [15] Vincent J. Ervin and John Paul Roop, Variational solution of fractional advection dispersion equations on bounded domains in $ \mathbb{R}^d$, Numer. Methods Partial Differential Equations 23 (2007), no. 2, 256-281. MR 2289452 (2007k:65147), https://doi.org/10.1002/num.20169
  • [16] Rudolf Gorenflo, Joulia Loutchko, and Yuri Luchko, Computation of the Mittag-Leffler function $ E_{\alpha ,\beta }(z)$ and its derivative, Fract. Calc. Appl. Anal. 5 (2002), no. 4, 491-518. MR 1967847 (2004d:33020a)
  • [17] R. Gorenflo, J. Loutchko, and Y. Luchko, Correction: ``Computation of the Mittag-Leffler function $ E_{\alpha ,\beta }(z)$ and its derivative'' [Fract. Calc. Appl. Anal. 5 (2002), no. 4, 491-518; MR1967847 (2004d:33020a)], Fract. Calc. Appl. Anal. 6 (2003), no. 1, 111-112. MR 1992470 (2004d:33020b)
  • [18] P. Grisvard, Elliptic Problems in Nonsmooth Domains. Pitman, Boston, MA, 1985.
  • [19] B. Jin, R. Lazarov, J. Pasciak, and W. Rundell, A finite element method for the fractional Sturm-Liouville problem, preprint, available as arXiv:1307.5114, 2013.
  • [20] Bangti Jin and William Rundell, An inverse Sturm-Liouville problem with a fractional derivative, J. Comput. Phys. 231 (2012), no. 14, 4954-4966. MR 2927980, https://doi.org/10.1016/j.jcp.2012.04.005
  • [21] Anatoly A. Kilbas, Hari M. Srivastava, and Juan J. Trujillo, Theory and Applications of Fractional Differential Equations, North-Holland Mathematics Studies, vol. 204, Elsevier Science B.V., Amsterdam, 2006. MR 2218073 (2007a:34002)
  • [22] J.-L. Lions and E. Magenes, Problèmes aux limites non homogènes et applications. Vol. 1, Travaux et Recherches Mathématiques, No. 17, Dunod, Paris, 1968 (French). MR 0247243 (40 #512)
  • [23] Ralf Metzler and Joseph Klafter, The random walk's guide to anomalous diffusion: a fractional dynamics approach, Phys. Rep. 339 (2000), no. 1, 77. MR 1809268 (2001k:82082), https://doi.org/10.1016/S0370-1573(00)00070-3
  • [24] A. M. Nahušev, The Sturm-Liouville problem for a second order ordinary differential equation with fractional derivatives in the lower terms, Dokl. Akad. Nauk SSSR 234 (1977), no. 2, 308-311 (Russian). MR 0454145 (56 #12396)
  • [25] Igor Podlubny, Fractional Differential Equations: An introduction to fractional derivatives, fractional differential equations, to methods of their solution and some of their applications, Mathematics in Science and Engineering, vol. 198, Academic Press, Inc., San Diego, CA, 1999. MR 1658022 (99m:26009)
  • [26] Igor Podlubny, Aleksei Chechkin, Tomas Skovranek, YangQuan Chen, and Blas M. Vinagre Jara, Matrix approach to discrete fractional calculus. II. Partial fractional differential equations, J. Comput. Phys. 228 (2009), no. 8, 3137-3153. MR 2509311 (2010c:65144), https://doi.org/10.1016/j.jcp.2009.01.014
  • [27] A. Yu. Popov and A. M. Sedletskiĭ, Distribution of roots of Mittag-Leffler functions, Sovrem. Mat. Fundam. Napravl. 40 (2011), 3-171 (Russian); English transl., J. Math. Sci. (N. Y.) 190 (2013), no. 2, 209-409. MR 2883249 (2012k:33049), https://doi.org/10.1007/s10958-013-1255-3
  • [28] Stefan G. Samko, Anatoly A. Kilbas, and Oleg I. Marichev, Fractional Integrals and Derivatives: Theory and Applications, Gordon and Breach Science Publishers, Yverdon, 1993. MR 1347689 (96d:26012)
  • [29] Alfred H. Schatz, An observation concerning Ritz-Galerkin methods with indefinite bilinear forms, Math. Comp. 28 (1974), 959-962. MR 0373326 (51 #9526)
  • [30] Hansjörg Seybold and Rudolf Hilfer, Numerical algorithm for calculating the generalized Mittag-Leffler function, SIAM J. Numer. Anal. 47 (2008/09), no. 1, 69-88. MR 2452852 (2009i:30024), https://doi.org/10.1137/070700280
  • [31] C. Shen and M. S. Phanikumar, An efficient space-fractional dispersion approximation for stream solute transport modeling, Adv. Water Res. 32 (2009), no. 10, 1482-1494.
  • [32] M. Kh. Shkhanukov, On the convergence of difference schemes for differential equations with a fractional derivative, Dokl. Akad. Nauk 348 (1996), no. 6, 746-748 (Russian). MR 1440740 (97m:65135)
  • [33] T. H. Solomon, E. R. Weeks, and H. L. Swinney, Observation of anomalous diffusion and Lévy flights in a two-dimensional rotating flow, Phys. Rev. Lett. 71 (1993), no. 24, 3975-3978.
  • [34] Ercília Sousa, Finite difference approximations for a fractional advection diffusion problem, J. Comput. Phys. 228 (2009), no. 11, 4038-4054. MR 2524510 (2010e:65134), https://doi.org/10.1016/j.jcp.2009.02.011
  • [35] Charles Tadjeran, Mark M. Meerschaert, and Hans-Peter Scheffler, A second-order accurate numerical approximation for the fractional diffusion equation, J. Comput. Phys. 213 (2006), no. 1, 205-213. MR 2203439 (2006j:65253), https://doi.org/10.1016/j.jcp.2005.08.008
  • [36] Hong Wang and Treena S. Basu, A fast finite difference method for two-dimensional space-fractional diffusion equations, SIAM J. Sci. Comput. 34 (2012), no. 5, A2444-A2458. MR 3023711, https://doi.org/10.1137/12086491X
  • [37] Hong Wang and Danping Yang, Wellposedness of variable-coefficient conservative fractional elliptic differential equations, SIAM J. Numer. Anal. 51 (2013), no. 2, 1088-1107. MR 3036999, https://doi.org/10.1137/120892295
  • [38] X. Zhang, M. Lv, J. W. Crawford, and I. M. Young, The impact of boundary on the fractional advection-dispersion equation for solute transport in soil: Defining the fractional dispersive flux with the caputo derivatives, Adv. Water Res. 30 (2007), no. 5, 1205-1217.

Similar Articles

Retrieve articles in Mathematics of Computation with MSC (2010): 65L60, 65N12, 65N30

Retrieve articles in all journals with MSC (2010): 65L60, 65N12, 65N30


Additional Information

Bangti Jin
Affiliation: Department of Mathematics, University of California, Riverside, 900 University Ave., Riverside, California 92521
Address at time of publication: Department of Computer Science, University College London, Gower Street, London WC1E 6BT, United Kingdom
Email: bangti.jin@gmail.com

Raytcho Lazarov
Affiliation: Department of Mathematics, Texas A&M University, College Station, Texas 77843-3368

Joseph Pasciak
Affiliation: Department of Mathematics, Texas A&M University, College Station, Texas 77843-3368

William Rundell
Affiliation: Department of Mathematics, Texas A&M University, College Station, Texas 77843-3368
Email: lazarov,pasciak,rundell@math.tamu.edu

DOI: https://doi.org/10.1090/mcom/2960
Keywords: Fractional boundary value problem, Caputo derivative, Riemann-Liouville derivative, variational formulation, finite element method, fractional Sturm-Liouville problem
Received by editor(s): August 20, 2013
Received by editor(s) in revised form: February 12, 2014, and April 6, 2014
Published electronically: April 30, 2015
Article copyright: © Copyright 2015 American Mathematical Society

American Mathematical Society