Remote Access Mathematics of Computation
Green Open Access

Mathematics of Computation

ISSN 1088-6842(online) ISSN 0025-5718(print)

 
 

 

Convergence of an adaptive finite element method for distributed flux reconstruction


Authors: Yifeng Xu and Jun Zou
Journal: Math. Comp. 84 (2015), 2645-2663
MSC (2010): Primary 65N12, 65N21, 65N30
DOI: https://doi.org/10.1090/mcom/2961
Published electronically: April 17, 2015
MathSciNet review: 3378842
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We shall establish the convergence of an adaptive conforming finite element method for the reconstruction of the distributed flux in a diffusion system. The adaptive method is based on a posteriori error estimators for the distributed flux, state and costate variables. The sequence of discrete solutions produced by the adaptive algorithm is proved to converge to the true triplet satisfying the optimality conditions in the energy norm, and the corresponding error estimator converges to zero asymptotically.


References [Enhancements On Off] (What's this?)

  • [1] Mark Ainsworth and J. Tinsley Oden, A Posteriori Error Estimation in Finite Element Analysis, Pure and Applied Mathematics (New York), Wiley-Interscience [John Wiley & Sons], New York, 2000. MR 1885308 (2003b:65001)
  • [2] O. M. Alifanov, Inverse Heat Transfer Problems, Springer, Berlin, 1994.
  • [3] I. Babuška and W. C. Rheinboldt, Error estimates for adaptive finite element computations, SIAM J. Numer. Anal. 15 (1978), no. 4, 736-754. MR 0483395 (58 #3400)
  • [4] I. Babuška and M. Vogelius, Feedback and adaptive finite element solution of one-dimensional boundary value problems, Numer. Math. 44 (1984), no. 1, 75-102. MR 745088 (85k:65070), https://doi.org/10.1007/BF01389757
  • [5] Wolfgang Bangerth and Amit Joshi, Adaptive finite element methods for the solution of inverse problems in optical tomography, Inverse Problems 24 (2008), no. 3, 034011, 22. MR 2421948 (2009e:65157), https://doi.org/10.1088/0266-5611/24/3/034011
  • [6] Wolfgang Bangerth and Rolf Rannacher, Adaptive Finite Element Methods for Differential Equations, Lectures in Mathematics ETH Zürich, Birkhäuser Verlag, Basel, 2003. MR 1960405 (2004b:65002)
  • [7] Roland Becker, Hartmut Kapp, and Rolf Rannacher, Adaptive finite element methods for optimal control of partial differential equations: basic concept, SIAM J. Control Optim. 39 (2000), no. 1, 113-132 (electronic). MR 1780911 (2001i:49052), https://doi.org/10.1137/S0363012999351097
  • [8] Roland Becker and Boris Vexler, A posteriori error estimation for finite element discretization of parameter identification problems, Numer. Math. 96 (2004), no. 3, 435-459. MR 2028723 (2004k:65197), https://doi.org/10.1007/s00211-003-0482-9
  • [9] Larisa Beilina and Claes Johnson, A posteriori error estimation in computational inverse scattering, Math. Models Methods Appl. Sci. 15 (2005), no. 1, 23-35. MR 2110450 (2006b:65135), https://doi.org/10.1142/S0218202505003885
  • [10] Larisa Beilina and Michael V. Klibanov, A posteriori error estimates for the adaptivity technique for the Tikhonov functional and global convergence for a coefficient inverse problem, Inverse Problems 26 (2010), no. 4, 045012, 27. MR 2608625 (2011b:65169), https://doi.org/10.1088/0266-5611/26/4/045012
  • [11] Larisa Beilina and Michael V. Klibanov, Reconstruction of dielectrics from experimental data via a hybrid globally convergent/adaptive inverse algorithm, Inverse Problems 26 (2010), no. 12, 125009, 30. MR 2737743 (2011j:65197), https://doi.org/10.1088/0266-5611/26/12/125009
  • [12] L. Beilina, M. V. Klibanov, and M. Yu. Kokurin, Adaptivity with relaxation for ill-posed problems and global convergence for a coefficient inverse problem, J. Math. Sci. (N. Y.) 167 (2010), no. 3, 279-325. MR 2839023 (2012m:65387), https://doi.org/10.1007/s10958-010-9921-1
  • [13] Peter Binev, Wolfgang Dahmen, and Ron DeVore, Adaptive finite element methods with convergence rates, Numer. Math. 97 (2004), no. 2, 219-268. MR 2050077 (2005d:65222), https://doi.org/10.1007/s00211-003-0492-7
  • [14] J. Manuel Cascon, Christian Kreuzer, Ricardo H. Nochetto, and Kunibert G. Siebert, Quasi-optimal convergence rate for an adaptive finite element method, SIAM J. Numer. Anal. 46 (2008), no. 5, 2524-2550. MR 2421046 (2009h:65174), https://doi.org/10.1137/07069047X
  • [15] P. G. Ciarlet and J.-L. Lions (eds.), Handbook of Numerical Analysis. Vol. II, Handbook of Numerical Analysis, II, North-Holland, Amsterdam, 1991. Finite Element Methods. Part 1. MR 1115235 (92f:65001)
  • [16] Albert Cohen, Ronald DeVore, and Ricardo H. Nochetto, Convergence rates of AFEM with $ H^{-1}$ data, Found. Comput. Math. 12 (2012), no. 5, 671-718. MR 2970853, https://doi.org/10.1007/s10208-012-9120-1
  • [17] E. Divo and J. S. Kapat, Multi-dimensional heat flux reconstruction using narrow-band thermochromic liquid crystal thermography, Inverse Problems in Science and Engineering, 9 (2001), 537-559.
  • [18] Willy Dörfler, A convergent adaptive algorithm for Poisson's equation, SIAM J. Numer. Anal. 33 (1996), no. 3, 1106-1124. MR 1393904 (97e:65139), https://doi.org/10.1137/0733054
  • [19] Tao Feng, Ningning Yan, and Wenbin Liu, Adaptive finite element methods for the identification of distributed parameters in elliptic equation, Adv. Comput. Math. 29 (2008), no. 1, 27-53. MR 2420863 (2009f:65248), https://doi.org/10.1007/s10444-007-9035-6
  • [20] A. Gaevskaya, R. H. W. Hoppe, Y. Iliash, and M. Kieweg, Convergence analysis of an adaptive finite element method for distributed control problems with control constraints, Control of coupled partial differential equations, Internat. Ser. Numer. Math., vol. 155, Birkhäuser, Basel, 2007, pp. 47-68. MR 2328601 (2008j:49085), https://doi.org/10.1007/978-3-7643-7721-2_3
  • [21] Anke Griesbaum, Barbara Kaltenbacher, and Boris Vexler, Efficient computation of the Tikhonov regularization parameter by goal-oriented adaptive discretization, Inverse Problems 24 (2008), no. 2, 025025, 20. MR 2408562 (2009c:65130), https://doi.org/10.1088/0266-5611/24/2/025025
  • [22] Michael Hintermüller and Ronald H. W. Hoppe, Goal-oriented adaptivity in pointwise state constrained optimal control of partial differential equations, SIAM J. Control Optim. 48 (2010), no. 8, 5468-5487. MR 2745781 (2011m:49066), https://doi.org/10.1137/090761823
  • [23] Michael Hintermüller, Ronald H. W. Hoppe, Yuri Iliash, and Michael Kieweg, An a posteriori error analysis of adaptive finite element methods for distributed elliptic control problems with control constraints, ESAIM Control Optim. Calc. Var. 14 (2008), no. 3, 540-560. MR 2434065 (2009e:65175), https://doi.org/10.1051/cocv:2007057
  • [24] Jingzhi Li, Jianli Xie, and Jun Zou, An adaptive finite element reconstruction of distributed fluxes, Inverse Problems 27 (2011), no. 7, 075009, 25. MR 2817425 (2012c:65182), https://doi.org/10.1088/0266-5611/27/7/075009
  • [25] Ruo Li, Wenbin Liu, Heping Ma, and Tao Tang, Adaptive finite element approximation for distributed elliptic optimal control problems, SIAM J. Control Optim. 41 (2002), no. 5, 1321-1349. MR 1971952 (2004a:49036), https://doi.org/10.1137/S0363012901389342
  • [26] Wenbin Liu and Ningning Yan, A posteriori error estimates for distributed convex optimal control problems, Adv. Comput. Math. 15 (2001), no. 1-4, 285-309 (2002). A posteriori error estimation and adaptive computational methods. MR 1887737 (2003a:49041), https://doi.org/10.1023/A:1014239012739
  • [27] J.-L. Lions, Optimal Control of Systems Governed by Partial Differential Equations, Translated from the French by S. K. Mitter. Die Grundlehren der mathematischen Wissenschaften, Band 170, Springer-Verlag, New York-Berlin, 1971. MR 0271512 (42 #6395)
  • [28] Igor Kossaczký, A recursive approach to local mesh refinement in two and three dimensions, J. Comput. Appl. Math. 55 (1994), no. 3, 275-288. MR 1329875 (95m:65207), https://doi.org/10.1016/0377-0427(94)90034-5
  • [29] Joseph M. Maubach, Local bisection refinement for $ n$-simplicial grids generated by reflection, SIAM J. Sci. Comput. 16 (1995), no. 1, 210-227. MR 1311687 (95i:65128), https://doi.org/10.1137/0916014
  • [30] William F. Mitchell, A comparison of adaptive refinement techniques for elliptic problems, ACM Trans. Math. Software 15 (1989), no. 4, 326-347 (1990). MR 1062496, https://doi.org/10.1145/76909.76912
  • [31] Pedro Morin, Ricardo H. Nochetto, and Kunibert G. Siebert, Convergence of adaptive finite element methods, SIAM Rev. 44 (2002), no. 4, 631-658 (electronic) (2003). Revised reprint of ``Data oscillation and convergence of adaptive FEM'' [SIAM J. Numer. Anal. 38 (2000), no. 2, 466-488 (electronic); MR1770058 (2001g:65157)]. MR 1980447, https://doi.org/10.1137/S0036144502409093
  • [32] Pedro Morin, Kunibert G. Siebert, and Andreas Veeser, A basic convergence result for conforming adaptive finite elements, Math. Models Methods Appl. Sci. 18 (2008), no. 5, 707-737. MR 2413035 (2009d:65178), https://doi.org/10.1142/S0218202508002838
  • [33] Ricardo H. Nochetto, Kunibert G. Siebert, and Andreas Veeser, Theory of adaptive finite element methods: an introduction, Multiscale, nonlinear and adaptive approximation, Springer, Berlin, 2009, pp. 409-542. MR 2648380 (2011k:65164), https://doi.org/10.1007/978-3-642-03413-8_12
  • [34] L. Ridgway Scott and Shangyou Zhang, Finite element interpolation of nonsmooth functions satisfying boundary conditions, Math. Comp. 54 (1990), no. 190, 483-493. MR 1011446 (90j:65021), https://doi.org/10.2307/2008497
  • [35] Kunibert G. Siebert, A convergence proof for adaptive finite elements without lower bound, IMA J. Numer. Anal. 31 (2011), no. 3, 947-970. MR 2832786 (2012j:65430), https://doi.org/10.1093/imanum/drq001
  • [36] Rob Stevenson, Optimality of a standard adaptive finite element method, Found. Comput. Math. 7 (2007), no. 2, 245-269. MR 2324418 (2008i:65272), https://doi.org/10.1007/s10208-005-0183-0
  • [37] Rob Stevenson, The completion of locally refined simplicial partitions created by bisection, Math. Comp. 77 (2008), no. 261, 227-241 (electronic). MR 2353951 (2008j:65219), https://doi.org/10.1090/S0025-5718-07-01959-X
  • [38] C. T. Traxler, An algorithm for adaptive mesh refinement in $ n$ dimensions, Computing 59 (1997), no. 2, 115-137. MR 1475530 (98d:65152), https://doi.org/10.1007/BF02684475
  • [39] Jianli Xie and Jun Zou, Numerical reconstruction of heat fluxes, SIAM J. Numer. Anal. 43 (2005), no. 4, 1504-1535. MR 2182138 (2006e:35344), https://doi.org/10.1137/030602551
  • [40] R. Verfürth, A Review of A Posteriori Estimation and Adaptive Mesh-Refinement Techniques, Wiley-Teubner, Chichester, New York, Stuttgart, 1996.
  • [41] Nicholas Zabaras and Shinill Kang, On the solution of an ill-posed design solidification problem using minimization techniques in finite- and infinite-dimensional function spaces, Internat. J. Numer. Methods Engrg. 36 (1993), no. 23, 3973-3990. MR 1247810 (94h:80007), https://doi.org/10.1002/nme.1620362304
  • [42] N. Zabaras and J. Liu, An analysis of two-dimensional linear inverse heat transfer problems using an integral method, Numer. Heat Transfer, 13 (1988), 527-533.

Similar Articles

Retrieve articles in Mathematics of Computation with MSC (2010): 65N12, 65N21, 65N30

Retrieve articles in all journals with MSC (2010): 65N12, 65N21, 65N30


Additional Information

Yifeng Xu
Affiliation: Department of Mathematics, Scientific Computing Key Laboratory of Shanghai Universities — and — E-Institute for Computational Science of Shanghai Universities, Shanghai Normal University, Shanghai 200234, China
Email: yfxu@shnu.edu.cn

Jun Zou
Affiliation: Department of Mathematics, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong
Email: zou@math.cuhk.edu.hk

DOI: https://doi.org/10.1090/mcom/2961
Keywords: Distributed flux reconstruction, adaptive finite element method, convergence
Received by editor(s): June 23, 2013
Received by editor(s) in revised form: February 11, 2014
Published electronically: April 17, 2015
Additional Notes: The research of the first author was partly supported by NSFC (11201307), MOE of China through Specialized Research Fund for the Doctoral Program of Higher Education (20123127120001), E-Institute of Shanghai Universities (E03004), Innovation Program of Shanghai Municipal Education Commission (13YZ059)
The work of the second author was supported by Hong Kong RGC grants (Projects 405110 and 404611) and a Direct Grant for Research from the Chinese University of Hong Kong
Article copyright: © Copyright 2015 American Mathematical Society

American Mathematical Society