Skip to Main Content

Mathematics of Computation

Published by the American Mathematical Society since 1960 (published as Mathematical Tables and other Aids to Computation 1943-1959), Mathematics of Computation is devoted to research articles of the highest quality in computational mathematics.

ISSN 1088-6842 (online) ISSN 0025-5718 (print)

The 2020 MCQ for Mathematics of Computation is 1.78.

What is MCQ? The Mathematical Citation Quotient (MCQ) measures journal impact by looking at citations over a five-year period. Subscribers to MathSciNet may click through for more detailed information.

 

Convergence of an iterative algorithm for Teichmüller maps via harmonic energy optimization
HTML articles powered by AMS MathViewer

by Lok Ming Lui, Xianfeng Gu and Shing-Tung Yau PDF
Math. Comp. 84 (2015), 2823-2842 Request permission

Abstract:

Finding surface mappings with least distortion arises from many applications in various fields. Extremal Teichmüller maps are surface mappings with least conformality distortion. The existence and uniqueness of the extremal Teichmüller map between Riemann surfaces of finite type are theoretically guaranteed (see Fletcher and Markovic, Quasiconformal maps and Teichmüller theory, Oxford Graduate Texts in Math., vol. 11, Oxford University Press, Oxford, 2007). Recently, a simple iterative algorithm for computing the Teichmüller maps between connected Riemann surfaces with given boundary value was proposed by Lui, Lam, Yau, and Gu in Teichmüller extremal mapping and its applications to landmark matching registration, arXiv:1211.2569. Numerical results were reported in the paper to show the effectiveness of the algorithm. The method was successfully applied to landmark-matching registration. The purpose of this paper is to prove the iterative algorithm proposed in loc. cit., indeed converges.
References
  • A. Fletcher and V. Markovic, Quasiconformal maps and Teichmüller theory, Oxford Graduate Texts in Mathematics, vol. 11, Oxford University Press, Oxford, 2007. MR 2269887
  • D. G. Crowdy, Conformal slit maps in applied mathematics, Computational Methods and Function Theory 53 (2012), no. 3, 171-189.
  • Darren G. Crowdy, Athanassios S. Fokas, and Christopher C. Green, Conformal mappings to multiply connected polycircular arc domains, Comput. Methods Funct. Theory 11 (2011), no. 2, [On table of contents: 2012], 685–706. MR 2858967, DOI 10.1007/BF03321882
  • Darren Crowdy and Jonathan Marshall, Conformal mappings between canonical multiply connected domains, Comput. Methods Funct. Theory 6 (2006), no. 1, 59–76. MR 2241034, DOI 10.1007/BF03321118
  • Nicholas Hale and T. Wynn Tee, Conformal maps to multiply slit domains and applications, SIAM J. Sci. Comput. 31 (2009), no. 4, 3195–3215. MR 2529786, DOI 10.1137/080738325
  • Thomas K. Delillo and Everett H. Kropf, Numerical computation of the Schwarz-Christoffel transformation for multiply connected domains, SIAM J. Sci. Comput. 33 (2011), no. 3, 1369–1394. MR 2813244, DOI 10.1137/100816912
  • Thomas K. DeLillo, Alan R. Elcrat, Everett H. Kropf, and John A. Pfaltzgraff, Efficient calculation of Schwarz-Christoffel transformations for multiply connected domains using Laurent series, Comput. Methods Funct. Theory 13 (2013), no. 2, 307–336. MR 3089960, DOI 10.1007/s40315-013-0023-1
  • Lloyd N. Trefethen, Numerical computation of the Schwarz-Christoffel transformation, SIAM J. Sci. Statist. Comput. 1 (1980), no. 1, 82–102. MR 572542, DOI 10.1137/0901004
  • Tobin A. Driscoll and Lloyd N. Trefethen, Schwarz-Christoffel mapping, Cambridge Monographs on Applied and Computational Mathematics, vol. 8, Cambridge University Press, Cambridge, 2002. MR 1908657, DOI 10.1017/CBO9780511546808
  • S. Haker, S. Angenent, A. Tannenbaum, R. Kikinis, G. Sapiro, and M. Halle, Conformal surface parameterization for texture mapping, IEEE Transaction of Visualization and Computer Graphics 6 (2000), 181-189.
  • B. Fischl, M. Sereno, R. Tootell, and A. Dale, High-resolution intersubject averaging and a coordinate system for the cortical surface, Human Brain Mapping 8 (1999), 272-284.
  • X. Gu, Y. Wang, T. F. Chan, P. M. Thompson, and S.-T. Yau, Genus zero surface conformal mapping and its application to brain, surface mapping, IEEE Transactions on Medical Imaging 23 (2004), no. 8, 949-958.
  • Y. Wang, L. M. Lui, X. Gu, K. M. Hayashi, T. F. Chan, A. W. Toga, P. M. Thompson, and S.-T. Yau, Brain surface conformal parameterization using riemann surface structure, IEEE Transactions on Medical Imaging 26(2007), no. 6, 853-865.
  • Xianfeng Gu and Shing-Tung Yau, Computing conformal structures of surfaces, Commun. Inf. Syst. 2 (2002), no. 2, 121–145. MR 1958012, DOI 10.4310/CIS.2002.v2.n2.a2
  • M. K. Hurdal and K. Stephenson, Discrete conformal methods for cortical brain flattening, Neuroimage 45 (2009), 86-98.
  • R. Michael Porter, An interpolating polynomial method for numerical conformal mapping, SIAM J. Sci. Comput. 23 (2001), no. 3, 1027–1041. MR 1860975, DOI 10.1137/S1064827599355256
  • Nicholas Hale and T. Wynn Tee, Conformal maps to multiply slit domains and applications, SIAM J. Sci. Comput. 31 (2009), no. 4, 3195–3215. MR 2529786, DOI 10.1137/080738325
  • Thomas K. Delillo and Everett H. Kropf, Numerical computation of the Schwarz-Christoffel transformation for multiply connected domains, SIAM J. Sci. Comput. 33 (2011), no. 3, 1369–1394. MR 2813244, DOI 10.1137/100816912
  • Frederick P. Gardiner and Nikola Lakic, Quasiconformal Teichmüller theory, Mathematical Surveys and Monographs, vol. 76, American Mathematical Society, Providence, RI, 2000. MR 1730906, DOI 10.1090/surv/076
  • L. M. Lui, K. C. Lam, S. T. Yau, X. F. Gu, Teichmüller extremal mapping and its applications to landmark matching registration, (submitted & under revision), arXiv:1211.2569 (http://arxiv.org/abs/1210.8025)
  • O. Lehto and K. I. Virtanen, Quasiconformal mappings in the plane, 2nd ed., Die Grundlehren der mathematischen Wissenschaften, Band 126, Springer-Verlag, New York-Heidelberg, 1973. Translated from the German by K. W. Lucas. MR 0344463
  • Kurt Strebel, On quasiconformal mappings of open Riemann surfaces, Comment. Math. Helv. 53 (1978), no. 3, 301–321. MR 505549, DOI 10.1007/BF02566081
  • Edgar Reich, Extremal quasiconformal mappings of the disk, Handbook of complex analysis: geometric function theory, Vol. 1, North-Holland, Amsterdam, 2002, pp. 75–136. MR 1966190, DOI 10.1016/S1874-5709(02)80005-1
Similar Articles
Additional Information
  • Lok Ming Lui
  • Affiliation: Department of Mathematics, The Chinese University of Hong Kong, Shatin, Hong Kong
  • Email: lmlui@math.cuhk.edu.hk
  • Xianfeng Gu
  • Affiliation: Department of Computer Sciences, State University of New York at Stony Brook, Stony Brook, New York
  • MR Author ID: 709542
  • Email: gu@cs.sunysb.edu
  • Shing-Tung Yau
  • Affiliation: Department of Mathematics, Harvard University, Cambridge, Massachusetts
  • MR Author ID: 185480
  • ORCID: 0000-0003-3394-2187
  • Email: yau@math.harvard.edu
  • Received by editor(s): September 18, 2013
  • Published electronically: March 24, 2015
  • Additional Notes: The first author was supported by RGC GRF (Project ID: 401811), CUHK Direct Grant (Project ID: 2060413), and CUHK FIS Grant (Project ID: 1902036)
  • © Copyright 2015 American Mathematical Society
  • Journal: Math. Comp. 84 (2015), 2823-2842
  • MSC (2010): Primary 52C26, 65D18, 65E05; Secondary 52B20, 52C99
  • DOI: https://doi.org/10.1090/S0025-5718-2015-02962-7
  • MathSciNet review: 3378849