Remote Access Mathematics of Computation
Green Open Access

Mathematics of Computation

ISSN 1088-6842(online) ISSN 0025-5718(print)



Hermitian matrices of three parameters: perturbing coalescing eigenvalues and a numerical method

Authors: Luca Dieci and Alessandro Pugliese
Journal: Math. Comp. 84 (2015), 2763-2790
MSC (2010): Primary 15A18, 15A23, 65P30
Published electronically: May 27, 2015
MathSciNet review: 3378847
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: In this work we consider Hermitian matrix-valued functions of 3 (real) parameters, and are interested in generic coalescing points of eigenvalues, conical intersections. Unlike our previous works [L. Dieci, A. Papini and A. Pugliese, Approximating coalescing points for eigenvalues of Hermitian matrices of three parameters, SIAM J. Matrix Anal. Appl., 2013] and [L. Dieci and A. Pugliese, Hermitian matrices depending on three parameters: Coalescing eigenvalues, Linear Algebra Appl., 2012], where we worked directly with the Hermitian problem and monitored variation of the geometric phase to detect conical intersections inside a sphere-like region, here we consider the following construction: (i) Associate to the given problem a real symmetric problem, twice the size, all of whose eigenvalues are now (at least) double, (ii) perturb this enlarged problem so that, generically, each pair of consecutive eigenvalues coalesce along curves, and only there, (iii) analyze the structure of these curves, and show that there is a small curve, nearly planar, enclosing the original conical intersection point. We will rigorously justify all of the above steps. Furthermore, we propose and implement an algorithm following the above approach, and illustrate its performance in locating conical intersections.

References [Enhancements On Off] (What's this?)

  • [1] Michael Baer, Beyond Born-Oppenheimer: Conical Intersections and Electronic Nonadiabatic Coupling Terms, Wiley-Interscience [John Wiley & Sons], Hoboken, NJ, 2006. MR 2215340 (2007b:81307)
  • [2] M. V. Berry, Quantal phase factors accompanying adiabatic changes, Proc. Roy. Soc. London Ser. A 392 (1984), no. 1802, 45-57. MR 738926 (85i:81022)
  • [3] M. V. Berry, Physics of non-Hermitian degeneracies, Czechoslovak J. Phys. 54 (2004), no. 10, 1039-1047. MR 2109637 (2005h:81142),
  • [4] Luca Dieci, Alessandra Papini, and Alessandro Pugliese, Approximating coalescing points for eigenvalues of Hermitian matrices of three parameters, SIAM J. Matrix Anal. Appl. 34 (2013), no. 2, 519-541. MR 3054590,
  • [5] Luca Dieci and Alessandro Pugliese, Two-parameter SVD: coalescing singular values and periodicity, SIAM J. Matrix Anal. Appl. 31 (2009), no. 2, 375-403. MR 2530255 (2010f:15012),
  • [6] Luca Dieci and Alessandro Pugliese, Singular values of two-parameter matrices: an algorithm to accurately find their intersections, Math. Comput. Simulation 79 (2008), no. 4, 1255-1269. MR 2487799 (2009j:65099),
  • [7] Luca Dieci and Alessandro Pugliese, Hermitian matrices depending on three parameters: coalescing eigenvalues, Linear Algebra Appl. 436 (2012), no. 11, 4120-4142. MR 2915273,
  • [8] A. Gallina, L. Pichler, and T. Uhl,
    Enhanced meta-modelling technique for analysis of mode crossing, mode veering and mode coalescence in structural dynamics,
    Mechanical Systems and Signal Processing, 25 (2011), 2297-2312.
  • [9] H. Gingold, A method of global blockdiagonalization for matrix-valued functions, SIAM J. Math. Anal. 9 (1978), no. 6, 1076-1082. MR 512511 (80a:15025),
  • [10] Morris W. Hirsch, Differential Topology, Springer-Verlag, New York-Heidelberg, 1976. Graduate Texts in Mathematics, No. 33. MR 0448362 (56 #6669)
  • [11] Po-fang Hsieh and Yasutaka Sibuya, A global analysis of matrices of functions of several variables, J. Math. Anal. Appl. 14 (1966), 332-340. MR 0194435 (33 #2645)
  • [12] Tosio Kato, Perturbation Theory for Linear Operators, 2nd ed., Springer-Verlag, Berlin-New York, 1976. Grundlehren der Mathematischen Wissenschaften, Band 132. MR 0407617 (53 #11389)
  • [13] H. B. Keller, Lectures on Numerical Methods in Bifurcation Problems, Tata Institute of Fundamental Research Lectures on Mathematics and Physics, vol. 79, Published for the Tata Institute of Fundamental Research, Bombay; by Springer-Verlag, Berlin, 1987. With notes by A. K. Nandakumaran and Mythily Ramaswamy. MR 910499 (89f:58031)
  • [14] O. N. Kirillov, A. A. Mailybaev, and A. P. Seyranian, Unfolding of eigenvalue surfaces near a diabolic point due to a complex perturbation, J. Phys. A 38 (2005), no. 24, 5531-5546. MR 2147178 (2006b:15018),
  • [15] A. A. Mailybaev, O. N. Kirillov, and A. P. Seyranian,
    Strong and weak coupling of eigenvalues of complex matrices,
    Proceedings of Physics and Control, International Conference, 312-318, 2005.
  • [16] A. A. Mailybaev, O. N. Kirillov, and A. P. Seyranian,
    Berry phase around degeneracies,
    Doklady Mathematics, 73-1:129-133, 2006.
  • [17] R. Melville and D. S. Mackey, A new algorithm for two-dimensional numerical continuation, Comput. Math. Appl. 30 (1995), no. 1, 31-46. MR 1336660,
  • [18] A. Srikantha Phani, J. Woodhouse, and N. A. Fleck,
    Wave propagation in two-dimensional periodic lattices,
    J. Acoust. Soc. Am. 119 (2006), 1995-2005.
  • [19] G. W. Stewart, Error and perturbation bounds for subspaces associated with certain eigenvalue problems, SIAM Rev. 15 (1973), 727-764. MR 0348988 (50 #1482)
  • [20] G. W. Stewart and Ji Guang Sun, Matrix Perturbation Theory, Computer Science and Scientific Computing, Academic Press, Inc., Boston, MA, 1990. MR 1061154 (92a:65017)
  • [21] A. J. Stone,
    Spin-orbit coupling and the intersection of potential energy surfaces in polyatomic molecules,
    Proc. Roy. Soc. Lond., A351 (1976), 141-150.
  • [22] J. von Neumann and E. Wigner,
    Eigenwerte bei adiabatischen prozessen,
    Physik Zeitschrift, 30 (1929), 467-470.
  • [23] Paul N. Walker, María José Sánchez, and Michael Wilkinson, Singularities in the spectra of random matrices, J. Math. Phys. 37 (1996), no. 10, 5019-5032. MR 1411618 (97i:82049),
  • [24] D. R. Yarkony,
    Conical intersections: The new conventional wisdom,
    J. Phys. Chem. A, 105 (2001), 6277-6293.

Similar Articles

Retrieve articles in Mathematics of Computation with MSC (2010): 15A18, 15A23, 65P30

Retrieve articles in all journals with MSC (2010): 15A18, 15A23, 65P30

Additional Information

Luca Dieci
Affiliation: School of Mathematics, Georgia Institute of Technology, Atlanta, Georgia 30332

Alessandro Pugliese
Affiliation: Dipartimento di Matematica, Università degli Studi di Bari Aldo Moro, Via Orabona 4, Bari, 70125 Italy

Keywords: Hermitian matrix-valued functions, conical intersection, perturbed eigenproblem, diabolical points
Received by editor(s): May 16, 2013
Received by editor(s) in revised form: April 1, 2014
Published electronically: May 27, 2015
Additional Notes: This work was supported in part under INDAM GNCS. Support from the School of Mathematics of the Georgia Institute of Technology is also gratefully acknowledged.
Article copyright: © Copyright 2015 American Mathematical Society

American Mathematical Society