Remote Access Mathematics of Computation
Green Open Access

Mathematics of Computation

ISSN 1088-6842(online) ISSN 0025-5718(print)

Request Permissions   Purchase Content 
 
 

 

Carmichael numbers in the sequence $ (2^n k+1)_{n\geq 1}$


Authors: Javier Cilleruelo, Florian Luca and Amalia Pizarro-Madariaga
Journal: Math. Comp. 85 (2016), 357-377
MSC (2010): Primary 11A51, 11J86, 11J87
DOI: https://doi.org/10.1090/mcom/2982
Published electronically: June 15, 2015
MathSciNet review: 3404453
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We prove that for each odd number $ k$, the sequence $ (k2^n+1)_{n\ge 1}$ contains only a finite number of Carmichael numbers. We also prove that $ k=27$ is the smallest value for which such a sequence contains some Carmichael number.


References [Enhancements On Off] (What's this?)

  • [1] W. R. Alford, Andrew Granville, and Carl Pomerance, There are infinitely many Carmichael numbers, Ann. of Math. (2) 139 (1994), no. 3, 703-722. MR 1283874 (95k:11114), https://doi.org/10.2307/2118576
  • [2] W. D. Banks, C. E. Finch, F. Luca, C. Pomerance and P. Stănică, Sierpiński and Carmichael numbers, Preprint, 2012.
  • [3] Yann Bugeaud, Pietro Corvaja, and Umberto Zannier, An upper bound for the G.C.D. of $ a^n-1$ and $ b^n-1$, Math. Z. 243 (2003), no. 1, 79-84. MR 1953049 (2004a:11064), https://doi.org/10.1007/s00209-002-0449-z
  • [4] Yann Bugeaud and Florian Luca, A quantitative lower bound for the greatest prime factor of $ (ab+1)(bc+1)(ca+1)$, Acta Arith. 114 (2004), no. 3, 275-294. MR 2071083 (2005j:11069), https://doi.org/10.4064/aa114-3-3
  • [5] Yann Bugeaud, Maurice Mignotte, and Samir Siksek, Classical and modular approaches to exponential Diophantine equations. I. Fibonacci and Lucas perfect powers, Ann. of Math. (2) 163 (2006), no. 3, 969-1018. MR 2215137 (2007f:11031), https://doi.org/10.4007/annals.2006.163.969
  • [6] R. D. Carmichael, Note on a new number theory function, Bull. Amer. Math. Soc. 16 (1910), no. 5, 232-238. MR 1558896, https://doi.org/10.1090/S0002-9904-1910-01892-9
  • [7] P. Corvaja and U. Zannier, On the greatest prime factor of $ (ab+1)(ac+1)$, Proc. Amer. Math. Soc. 131 (2003), no. 6, 1705-1709 (electronic). MR 1955256 (2003j:11074), https://doi.org/10.1090/S0002-9939-02-06771-0
  • [8] Pietro Corvaja and Umberto Zannier, A lower bound for the height of a rational function at $ S$-unit points, Monatsh. Math. 144 (2005), no. 3, 203-224. MR 2130274 (2005k:11140), https://doi.org/10.1007/s00605-004-0273-0
  • [9] P. Erdős and A. M. Odlyzko, On the density of odd integers of the form $ (p-1)2^{-n}$ and related questions, J. Number Theory 11 (1979), no. 2, 257-263. MR 535395 (80i:10077), https://doi.org/10.1016/0022-314X(79)90043-X
  • [10] Jan-Hendrik Evertse, An improvement of the quantitative subspace theorem, Compositio Math. 101 (1996), no. 3, 225-311. MR 1394517 (97e:11080)
  • [11] Kevin Ford, The distribution of integers with a divisor in a given interval, Ann. of Math. (2) 168 (2008), no. 2, 367-433. MR 2434882 (2009m:11152), https://doi.org/10.4007/annals.2008.168.367
  • [12] Santos Hernández and Florian Luca, On the largest prime factor of $ (ab+1)(ac+1)(bc+1)$, Bol. Soc. Mat. Mexicana (3) 9 (2003), no. 2, 235-244. MR 2029272 (2004i:11028)
  • [13] E. M. Matveev, An explicit lower bound for a homogeneous rational linear form in logarithms of algebraic numbers. II, Izv. Ross. Akad. Nauk Ser. Mat. 64 (2000), no. 6, 125-180 (Russian, with Russian summary); English transl., Izv. Math. 64 (2000), no. 6, 1217-1269. MR 1817252 (2002e:11091), https://doi.org/10.1070/IM2000v064n06ABEH000314
  • [14] Corentin Pontreau, A Mordell-Lang plus Bogomolov type result for curves in $ \mathbb{G}^2_m$, Monatsh. Math. 157 (2009), no. 3, 267-281. MR 2520729 (2010e:11060), https://doi.org/10.1007/s00605-008-0028-4
  • [15] Thomas Wright, The impossibility of certain types of Carmichael numbers, Integers 12 (2012), no. 5, 951-964. MR 2988558, https://doi.org/10.1515/integers-2012-0016

Similar Articles

Retrieve articles in Mathematics of Computation with MSC (2010): 11A51, 11J86, 11J87

Retrieve articles in all journals with MSC (2010): 11A51, 11J86, 11J87


Additional Information

Javier Cilleruelo
Affiliation: Instituto de Ciencias Matemáticas (CSIC-UAM-UC3M-UCM) and Departamento de Matemáticas, Universidad Autónoma de Madrid, 28049, Madrid, España
Email: franciscojavier.cilleruelo@uam.es

Florian Luca
Affiliation: School of Mathematics, University of the Witwatersrand, P. O. Box Wits 2050, South Africa
Email: fluca@wits.ac.za

Amalia Pizarro-Madariaga
Affiliation: Instituto de Matemáticas, Universidad de Valparaiso, Chile
Email: amalia.pizarro@uv.cl

DOI: https://doi.org/10.1090/mcom/2982
Keywords: Carmichael numbers, Subspace Theorem, linear forms in logarithms
Received by editor(s): August 12, 2013
Received by editor(s) in revised form: July 22, 2014, and July 29, 2014
Published electronically: June 15, 2015
Article copyright: © Copyright 2015 American Mathematical Society

American Mathematical Society